## 平成21年度

## 和歌山県高等学校入学者選抜学力検査問題

# 数学

(11時35分~12時25分)

### (注 意)

- 1 「始め」の合図があるまで、問題を見てはいけません。
- 2 問題冊子と別に解答用紙が1枚あります。答えは、すべて解答用紙に記入しなさい。
- 3 問題冊子と解答用紙の両方の決められた欄に、受検番号を記入しなさい。
- 4 計算にあたっては、問題冊子の余白を使いなさい。
- 5 印刷が悪くて分からないときや筆記用具を落としたときなどは、黙って手を挙げなさい。
- 6 時間内に解答が終わっても、その場に着席していなさい。
- 7 「やめ」の合図があったら、すぐに解答するのをやめ、解答用紙を裏向けにして机の上に 置きなさい。

受 検 番 号

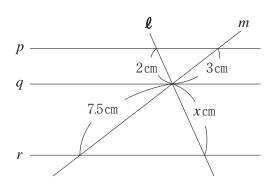
- **】** 次の〔**問1**〕~〔**問5**〕に答えなさい。
  - [**問1**] 次の(1) $\sim$ (5)を計算しなさい。
    - **(1**) -3+9
    - $(2) \quad \frac{9}{10} \frac{1}{2} \div (-5)$
    - (3)  $\frac{1}{3}(x-3y) \frac{1}{2}(2y \frac{4}{3}x)$
    - **(4)**  $\sqrt{125} + \sqrt{80} \sqrt{45}$
    - **(5)**  $(x-7y)^2 (x+7y)(x-7y)$
  - 〔問2〕 次の連立方程式を解きなさい。

$$\begin{cases} 2x + y = 3 \\ x + 3y = -1 \end{cases}$$

〔問3〕 次の二次方程式を解きなさい。

$$x^2 + x - 42 = 0$$

〔**問4**〕 右の図のように、2つの直線  $\ell$ , m が、3つの平行な直線 p, q, r と交わるとき、xの値を求めなさい。



[問5] 次の方程式にあてはまる自然数m,nの値の組(m,n)を、すべて求めなさい。

$$2m + 3n = 17$$

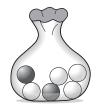
**2** 次の〔問**1**〕~〔問**4**〕に答えなさい。

[**問1**] 次の大小関係にあてはまる自然数 a はいくつあるか、求めなさい。

 $2.5 < \sqrt{a} < 3.5$ 

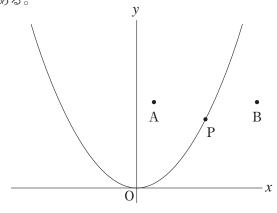
[**問2**] 袋の中に、白玉が4個、黒玉が2個、合計6個の玉が入っている。 この袋の中から同時に2個の玉を取り出す。

このとき、取り出した玉の色が同じである確率を求めなさい。 ただし、どの玉の取り出し方も、同様に確からしいものとする。



[**問3**] 右の図のように、関数  $y = \frac{1}{4}x^2$  のグラフがある。また、点 A(1,5),B(7,5) がある。点 P は、 $y = \frac{1}{4}x^2$  のグラフ上にあるものとする。

このとき,次の(1),(2)に答えなさい。

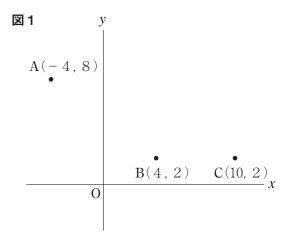


- (**1**) Pのx座標が4のとき, y座標を求めなさい。
- (2) △PABの面積が12となるPの座標をすべて求めなさい。
- [**問4**] ある円錐の側面の展開図は、半径18cmのおうぎ形である。このおうぎ形の弧の長さが  $12\pi$  cmのとき、次の( $\mathbf{1}$ )、( $\mathbf{2}$ )に答えなさい。 ただし、 $\pi$  は円周率を表している。
  - (1) このおうぎ形の中心角の大きさを求めなさい。
  - (2) この円錐の体積を求めなさい。

**3** 図1のように、3点A(-4,8)、

B(4, 2), C(10, 2) がある。

次の〔**問1**〕~〔**問3**〕に答えなさい。



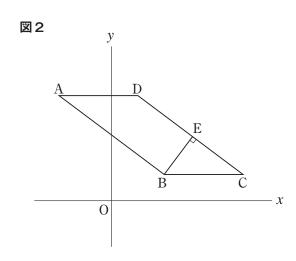
[問1] 次の文中の  $(\mathbf{7})$ ,  $(\mathbf{1})$  にあてはまる数を求めなさい。

直線 y = ax - 2 のグラフが、線分BCと交わるとき、aの値の範囲は、 $(\mathbf{P}) \le a \le (\mathbf{1})$  である。

[問2] △AOBが直角三角形であることを証明しなさい。

[**問3**] **図2**のように、四角形ABCDが平行四辺形となるように点Dをとる。さらに、点Bから 直線CDに垂線をひき、CDとの交点をEとする。

このとき、BEの長さを求めなさい。

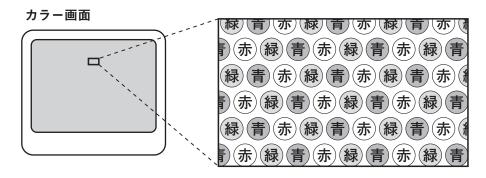


**4** コンピュータやテレビのカラー画面は、規則正しく並んだたくさんの小さな赤、緑、青の点で、さまざまな色を表示している。

**図1**は、あるカラー画面とその一部を拡大したものを模式的に表している。また、赤、緑、青の点を それぞれ円で表している。

下の〔問1〕,〔問2〕に答えなさい。

#### 図 1



[**問1**] **図2**は、**図1**のカラー画面のある一行を取り出し、赤の円の一つを1番目とし、その右側にある円を2番目、さらにその右側を3番目、・・・としたものである。 このとき、下の(1)、(2)に答えなさい。

#### 図2

1番目 2番目 3番目 4番目 5番目 6番目 7番目 8番目 9番目 10番目・・・



- (1) 20番目の円の色を答えなさい。
- (2) 1番目から100番目までに、赤の円は何個あるか、求めなさい。

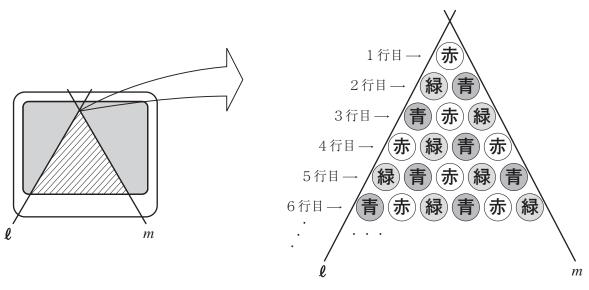
[**問2**] **図3**は、**図1**のカラー画面に直線  $\ell$ , m をひき、この2つの直線で挟まれた の部分の一部を拡大し、一番上の赤の円を1行目、その下の行を2行目、さらにその下の行を3行目、・・・としたものである。

下の表は、図3について、各行ごとの円の色や個数についてまとめたものである。

表中の $\diamondsuit$ ,  $\bigstar$ は、連続する2つの順番を表し、\*は、あてはまる数、式、色を省略したことを示している。なお、aは自然数である。

このとき、下の(1)、(2)に答えなさい。

#### 図3



#### 表

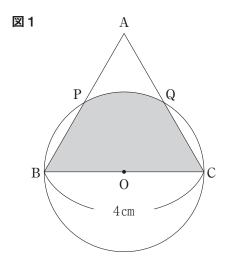
| 順番(行目)         | 1 | 2 | 3 | 4 | 5 | 6 | 7           | <u>}</u> { | (ウ) | <u> </u>    | ☆           | *     | <b></b>    |
|----------------|---|---|---|---|---|---|-------------|------------|-----|-------------|-------------|-------|------------|
| 直線ℓに最も近い円の色    | 赤 | 緑 | 青 | 赤 | 緑 | 青 | *           | }{         | 緑   | <u>}…</u> { | *           | *     | <u> </u>   |
| 赤の円の個数         | 1 | 0 | 1 | 2 | 1 | 2 | (ア)         | }}         | 5   | }}          | a           | a - 1 | <b>}</b> } |
| 緑の円の個数         | 0 | 1 | 1 | 1 | 2 | 2 | *           | <u>}</u> { | 6   | <u> </u>    | *           | *     | <b></b>    |
| 青の円の個数         | 0 | 1 | 1 | 1 | 2 | 2 | <b>(1</b> ) | <u>}</u> { | *   | <u>}</u> {  | *           | *     | <b></b>    |
| その行にあるすべての円の個数 | 1 | 2 | 3 | 4 | 5 | 6 | 7           | }}         | (ウ) | <u>}</u> }  | <b>(工</b> ) | *     | }}         |

- (1) 表中の( $\mathbf{P}$ ) $\sim$ ( $\mathbf{p}$ )にあてはまる数を求めなさい。また、( $\mathbf{I}$ )にあてはまる式を a を使って求めなさい。
- (**2**) 251行目の左端から数えて21個目の円の色を求めなさい。 ただし、答えを求める過程がわかるようにかきなさい。

**5** 下の**図1~図3** のように、円0と正三角形がある。

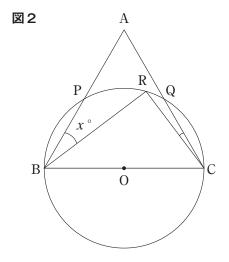
次の〔問1〕,〔問2〕に答えなさい。

- [問1] 図1,図2のように、円Oとその直径を1辺とする正三角形ABCがある。また、辺AB、ACと円Oとの交点をそれぞれP、Qとする。次の(1)、(2)に答えなさい。
  - (1) 図1のように、直径BC = 4 cmとする。 このとき、 の部分の面積を求めなさい。 ただし、円周率は $\pi$ とする。



(2) 図2のように、 $\widehat{PQ}$ 上に点Rをとり、 $\angle ABR = x^\circ$ とする。

このとき、 $\angle$  ACRの大きさを、x の式で表しなさい。



[問2] 図3のように、円Oの弦EFを1辺とする正三角形DEFがある。

ただし、EFの長さは、円Oの半径より長いものとする。

 $\angle$ EFDの二等分線が円Oの円周と交わる点をSとするとき、線分DSと円Oの半径が等しいことを証明しなさい。

