家畜ふん堆肥を活用した施肥指針

1 はじめに

家畜ふん堆肥は、これまで土づくりに有効な資材として捉えられてきたが、 最近の肥料高騰に対応して経費節減を図るために、堆肥の肥料成分を考慮した 施肥体系を確立することが重要である。

牛ふん堆肥は、窒素の肥効が低いために土づくりの有機質資材に適している が、鶏ふん堆肥は窒素の肥効が高く、またリン酸やカリも豊富に含んでいるた め、鶏ふん堆肥を肥料として積極的な利用を図るために、本指針を作成するも のである。

1)各種堆肥における肥料成分の肥効率

家畜ふん堆肥を施用する場合は、窒素は含有量によって肥効率が異なるため、表 1を参考に堆肥からの窒素、リン酸、カリ等の肥効を勘案して基肥施肥量を削減す

なお、ここで示した肥効率は、単年施用の場合であり、連年施用する場合は、前 年までに施用した堆肥の分解により窒素肥効が高まる(牛ふんの場合 2 倍程度)。

参考まで代表的な家畜ふん堆肥の含有成分の例を示す。 ま1 冬種性間の変素今有変別の間料成分の間効変の日安

衣! 音種堆配の至系占有率別の配料成力の配効率の自女						
堆肥の	全窒素含有量	全窒素含有量	堆肥	の肥効率(%)	
種類	(乾物当たり)	(現物当たり)	窒素	リン酸	カリ	
鶏ふん堆肥	2 %未満	1 %未満	20	80	90	
	2 ~ 4	1 ~ 2	50	80	90	
	4 以上	2 以上	60	80	90	
牛ふん・	2 %未満	1 %未満	10	80	90	
豚ふん堆肥	2 ~ 4	1 ~ 2	30	80	90	
	4 以上	2 以上	40	80	90	

現物当たり(%)は、水分含量を50%として計算した。

全カリ含量が乾物当たり 1.5%未満の場合はカリ肥効率を 50%とする。

成分含量は、堆肥の袋に表示されているが、堆肥の含有成分の表示は、乾物又は現物当たりの表示が 混在するので注意すること。

石灰の肥効率は全ての堆肥が90%とした。

参考 家畜ふん堆肥の含有成分量(例)

	現物旨	当たり成分	}割合((%)	現物 1	トン当だ	こりの反	 发分量
堆 肥 名					(kg/10a	ı)		
	窒素	リン酸	カリ	石灰	窒素	リン酸	カリ	石灰
鶏ふんオガクズ堆肥	1.5	2.5	1.5	5.5	7.5	20	13.5	49.5
乾燥鶏ふん	3.6	4.0	2.2	10.0	18	32	19.8	90.0
牛ふんオガクズ堆肥	0.6	0.8	0.7	1.0	0.6	6.4	3.5	9.0
乾燥牛ふん	1.6	1.9	1.4		4.8	15.2	12.6	

注)乾燥牛ふん、乾燥鶏ふんの肥効率は表1の乾物当たりの欄を参照

注)肥効率は化学肥料の肥効を100とする。

2)使用のポイント

鶏ふん堆肥では窒素、リン酸、カリを、牛ふん堆肥ではリン酸、カリを代替できる。肥料の代替として鶏ふん堆肥を基肥施用する場合は、施用量は基肥窒素の 50%を上限に施用する。また、牛ふん、豚ふん堆肥を基肥施用する場合は基肥窒素の 30%を上限に施用する。

堆肥の施用から野菜等の定植までが1週間以上と長びくと、硝化作用が起こり硝酸態窒素の流亡による肥効の低下がみられるので、堆肥で基肥代替をする場合は、堆肥施用から1週間以内に定植を行う。

堆肥で代替されるリン酸またはカリが各品目の示した当初の基準施肥量を上回る場合は、過剰施肥を避けるため、基準施肥量を上限として堆肥施用量を決定する。

ここでは、堆肥中の肥料成分を差し引いた施肥設計について計算方法を紹介するが、実際の施肥設計に当たっては、土壌分析により土壌中に残存している肥料成分を考慮して施肥設計を行う。

施肥成分量及び堆肥施用量の計算方法は次の通りである。

関係式(堆肥成分量 = 堆肥施用量×成分割合×肥効率)から、堆肥施用量は以下の式で求められる。

堆肥施用量=施肥成分量÷成分割合÷肥効率

計算例

現物当たり窒素 1.5%、リン酸 2.5%、カリ 1.5%の表示のある鶏ふん堆肥を用いて、窒素成分 10kg に相当する施用量を計算する。

施用量 = $10 \text{kg} \div 0.015 \div 0.5 = 1333 \text{kg}$

鶏ふん堆肥 1333kg を施用する場合のリン酸、カリ量を計算する。

リン酸 = 1333kg × 0.025 × 0.8 = 26.7kg

カ リ = $1333 \text{kg} \times 0.015 \times 0.9 = 18.0 \text{kg}$

窒素 10kg を代替する鶏ふん堆肥は 1333kg であり、それは同時にリン酸 26.7kg、カリ 18.0kg を代替する。

3)連用による土壌の変化

家畜ふん堆肥の連用により、表 2 に示すように、鶏ふん堆肥では土壌中の有効態リン酸、交換性石灰が、牛ふん堆肥では交換性カリが蓄積するため、定期的に土壌診断を行い、リン酸等の過剰施用をさける。

表2 堆肥の連用に伴う土壌養分の蓄積					
堆肥の種類		蓄積養分			
	リン酸	カリ	石灰		
鶏ふん堆肥					
牛ふん堆肥					
豚ふん堆肥					

蓄積多: 、蓄積中: 、蓄積少:空白

2 作物別施肥指針

化学肥料の代替として、肥効の高い鶏ふん堆肥を基肥等に活用する場合の施肥法について、水稲、ハクサイ、キャベツ、レタス、ホウレンソウ、中晩柑(不知火)、ウメの7品目について示す。

1)水稲

施肥のポイント

水稲の一般的な施肥は、基肥に窒素 5 kg/10 a、リン酸 8 kg、カリ 5 kg 施用し、追肥として窒素 5 kg、カリ 5 kg を施用している。

リン酸は全量基肥施用し、窒素とカリの追肥は出穂 25 ~ 22 日前、15 ~ 10 日前の 2 回に分施している。

鶏ふん堆肥を化学肥料代替として施用する場合は、基肥として施用し、施肥量は基肥窒素の 50%を上限に施用する。堆肥を追肥に施用すると窒素肥効が遅くまで続き玄米品質の低下を招くため、追肥は速効性の化学肥料を用いる。

施肥設計の実際

表 3 に示す鶏ふん堆肥を用いて、基肥窒素の 50%である 2.5kg の窒素を代替する場合、1-2)使用のポイント($2 \land ^\circ - ^\circ$)に基づいて計算すると、現物施用量は 333kg/10a である。この場合、窒素 2.5kg、リン酸 6.7kg、カリ 4.5kg が含まれる (表 4)。よって、基肥の化成肥料は、窒素 2.5kg、リン酸 1.3kg、カリ 0.5kg を施用する。

表3 鶏ふん堆肥(採卵鶏)の養分含量(現物当たり含有量

窒素	リン酸	カリ	石灰	水分	
1.5%	2.5%	1.5%	5.5%	50%	

留意点

鶏ふん堆肥は、代かきの1週間以内に施用する。施用から代かきまで1週間以上経過すると硝化作用が起こり窒素の利用率が低下する。

表4 鶏ふん堆肥利用における施肥設計例(kg/10a)

7 = ^	ka/10a)
ノ言・ちちい	ka/10a)

	基	<u> 準施肥量</u>		鶏る	ん堆肥利用	1の施肥設計例	iJ
	基肥	追肥	合計	基用	e	追肥	合計
				鶏ふん堆肥	化成肥料	化成肥料	
窒素	5	5	10	Λ 2.5	2.5	5	10
リン酸	8	0	8		1.3	0	8
カリ	5	5	10	⁷ 4.5	0.5	5	10
<u> </u>	〜 1715m// + 19京ま + 50 本頭 > 7 - 14 mooo + 14 の 14 mooo + 14 を 17 の 18 へ						

注)現物当たり窒素1.5%の鶏ふん堆肥333kg/10a施用の場合

2)野菜

(1)年内どりハクサイ

施肥のポイント

年内どり栽培の一般的な施肥量は、窒素 40 kg/10 a、リン酸 25 kg、カリ 40 kg程度で、基肥窒素としてその 60%の 24 kg が施用され、追肥は定植 20 日後と結球開始期の 2 回行われている。リン酸は全量基肥施用とし、カリは窒素と同様に施用されている。

鶏ふん堆肥を化学肥料代替として施用する場合は、基肥として施用し、施肥量は基肥窒素の 50%を上限に施用する。年内どりハクサイの場合、追肥時期の温度が低く、鶏ふん堆肥の窒素肥効が劣るため、追肥は速効性の化学肥料を用いる。

ただし、施用堆肥で代替されるリン酸あるいはカリが基準施肥量を上回る場合は、過剰施肥を避けるため、基準施肥量を上限として堆肥施用量を決定する。

施肥設計の実際

表 3 に示す鶏ふん堆肥を用いて、基肥窒素の 50%である 12 kg の窒素を代替する場合、1-2)使用のポイント($2 \wedge^2 - 9^2$)に基づいて施用量を計算すると、現物施用量は 1,600 kg/10a となる。しかし、リン酸の施肥量 25 kg を上回り過剰施肥となるため、リン酸の施肥量 25 kg を目標に再計算を行うと、1,250 kg/10a である。この場合、窒素 9 kg、リン酸 25 kg、カリ 17 kg が含まれる(表 5)。よって、基肥の化成肥料は、窒素 15 kg、カリ 7 kg を施用し、リン酸は省くことができる。

≢⊑	廻ったと接頭利用における旋頭試験(Jca/10a)	(日本収集:0 - 10+/10a)
衣り	鶏ふん堆肥利用における施肥設計例(kg/10a)	(目標収量:9~10t/10a)

		基準施肥量		鶏ろ	ん堆肥利用	の施肥設計例	iJ
	基肥	追肥	合計	基朋	e	追肥	合計
				鶏ふん堆肥	化成肥料	化成肥料	
室素	24	16	40	, 9	15	16	40
リン酸	25	0	25	25	0	0	25
<u>カリ</u>	24	16	40	^v 17	7	16	40

注)現物当たり窒素1.5%の鶏ふん堆肥1250kg/10a施用の場合 この施肥設計には石灰資材約100kgが含まれる

(2)年内どりキャベツ

施肥のポイント

年内どり栽培の一般的な施肥量は、窒素 35 kg/10a、リン酸 25 kg、カリ 35 kg程度であり、基肥窒素として、その 60%の 21 kg が施用されている。

鶏ふん堆肥を化学肥料代替として施用する場合は、基肥として施用し、施肥量は基肥窒素の 50%を上限に施用する。追肥については、追肥時期の温度が低く、土壌表面施用であり、鶏ふん堆肥の窒素肥効が劣るため、速効性の化学肥料を用いる。

ただし、施用堆肥で代替されるリン酸あるいはカリが基準施肥量を上回る場合は、過剰施肥を避けるため、基準施肥量を上限として堆肥施用量を決定する。

施肥設計の実際

表 3 に示す鶏ふん堆肥を用いて、基肥窒素の 50%である 10.5 kg の窒素を代替する場合、1-2)使用のポイント($2 \wedge^2 - \hat{y}^2$)に基づいて施用量を計算すると、現物施用量は 1,600 kg/10a である。しかし、リン酸の施肥量 25 kg を上回り過剰施肥となるため、リン酸の施肥量 25 kg を目標に再計算を行うと、1,250 kg/10a である。この場合、窒素 9 kg、リン酸 25 kg、カリ 17 kg が含まれる(表 6)。よって、基肥の化成肥料は、窒素 12 kg、カリ 4 kg を施用し、リン酸は省くことができる。

表6 鶏ふん堆肥利用における年内どりキャベツ施肥設計例(kg/10a) (目標収量:4t/10a)

		基準施肥量		鶏バ	ふん堆肥利用	の施肥設計例	利
	基肥	追肥	合計	基	把	追肥	合計
				鶏ふん堆肥	化成肥料	化成肥料	
室素	21	14	35	۸ 9	12	14	35
リン酸	25	0	25		0	0	25
カリ	21	14	35	[™] 17	4	14	35

注)現物当たり窒素1.5%の鶏ふん堆肥1250kg/10a施用の場合 この施肥設計には石灰資材約100kgが含まれる

(3)年内どリレタス

施肥のポイント

年内どり栽培の一般的な施肥量は、窒素 25 kg/10a、リン酸 25 kg、カリ 25 kg 程度で、基肥窒素としてその 60%の 15 kg が施用されている。

また、マルチ栽培では施肥量がやや少なく、窒素 20kg/10a、リン酸 20kg、カリ 20kg が全量基肥施用されており、鶏ふん堆肥を化学肥料代替として施用する場合は、基肥窒素の 50%を上限に施用する。

ただし、施用堆肥で代替されるリン酸あるいはカリが基準施肥量を上回る場合は、過剰施肥を避けるため、基準施肥量を上限として堆肥施用量を決定する。

施肥設計の実際

マルチ栽培において、表 3 に示す鶏ふん堆肥を用いて、基肥窒素の 50% である 10 kg の窒素を代替する場合、1-2)使用のポイント($2 \land -9$)に基づいて施用量を計算すると、現物施用量は 1,330 kg/10 a である。

しかし、リン酸の施肥量 20 kg を上回り過剰施肥となるため、リン酸の施肥量 20 kg に基づき再計算を行うと 1,000 kg/10a となる。この場合、窒素 7.5 kg、リン酸 20 kg、カリ 13.5 kg が含まれる (表 7)。よって、基肥の化成肥料は、窒素 12.5 kg、カリ 6.5 kg を施用し、リン酸は省くことができる。

表7 鶏ふん堆肥利用におけるレタスマルチ栽培の施肥設計例(kg/10a) (目標収量:3t/10a)

_	-	基準施肥量		鶏バ	ん堆肥利用	目の施肥設計例	iJ
-	基肥	追肥	合計	基	<u>le</u>	追肥	合計
				鶏ふん堆肥	化成肥料	化成肥料	
窒素	20	0	20	₁ 7.5	12.5	0	20
リン酸	20	0	20	20	0	0	20
カリ	20	0	20	13.5	6.5	0	20

注)現物当たり窒素1.5%の鶏ふん堆肥1000kg/10a施用の場合

この施肥設計には石灰資材約100kgが含まれる

(4) ホウレンソウ(露地栽培)

施肥のポイント

生育日数が短い露地の春、秋どり栽培での一般的な施肥量は、窒素 15 kg/10 a、リン酸 10 kg、カリ 15 kg 程度であり、基肥窒素としてその 50%の 7.5 kg が施用されている。

露地冬どり栽培の一般的な施肥量は、窒素 20 kg/10 a、リン酸 10 kg、カリ 20 kg程度であり、基肥窒素としてその 50 %の 10 kg が施用されている。何れの作型ともリン酸は全量基肥施用し、カリは窒素と同時に施用されている。

鶏ふん堆肥を化学肥料代替として施用する場合は、基肥として施用し、施肥量は基肥窒素の 50%を上限とする。

また、冬どり栽培で、播種時期が遅くなると鶏ふん堆肥の肥効が劣るため、10 月以降播種の作型には鶏ふん堆肥による肥料代替は適さない。

施肥設計の実際

表 3 に示す鶏ふん堆肥を用いて、基肥窒素の 50%である 3.75 kg の窒素を代替する場合、1-2)使用のポイント $(2 \ ^\circ -)^\circ$)に基づいて、春、秋どり栽培の施用量を計算すると現物施用量は 500 kg/10a である。この場合、窒素 4 kg、リン酸 10 kg、カリ 7 kg が含まれる (表 8)。よって、基肥の化成肥料は、窒素 3.5 kg、カリ 0.5 kg を施用し、リン酸は省くことができる。

同様に、冬どり栽培の施肥設計を表りに示す。基肥の化成肥料は、窒素 6kg、カリ 3kg を施用し、リン酸は省くことができる。

表8 鶏ふん堆肥利用における春、秋どり栽培の施肥設計例(kg/10a) (目標収量:1t/10a)

		基準施肥量		鶏	ふん堆肥利用	の施肥設計例	列
	基肥	追肥	合計	基	ショニ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	追肥	合計
				鶏ふん堆肌	巴 化成肥料	化成肥料	
窒素	7.5	7.5	15	, 4	3.5	7.5	15
リン酸	10	0	10		0	0	10
カリ	7.5	7.5	15	7	0.5	7.5	15

注)現物当たり窒素1.5%の鶏ふん堆肥500kg/10a施用の場合

この施肥設計には石灰資材約50kgが含まれる

表9	鶏ふん堆肥利用にむ	ける冬どり栽培の施肥設計例(kg/10a)	(目標収量∶2t/10a)
----	-----------	-----------------------	---------------

		基準施肥量						
	基肥	追肥	合計	基肥		追肥	合計	
				鶏ふん堆肥	化成肥料	化成肥料		
窒素	10	10	20	۸ 4	6	10	20	
リン酸	10	0	10		0	0	10	
<u>カリ</u>	10	10	20	^v 7	3	10	20	

注)現物当たり窒素1.5%の鶏ふん堆肥500kg/10a施用の場合

この施肥設計には石灰資材約50kgが含まれる

3)果樹

(1)中晚柑(不知火)

施肥のポイント

中晩柑は、大果・連年安定生産、樹勢維持に重点をおくため、温州ミカンに 比べて樹体栄養を高い水準に保つ必要があり、施肥量は温州ミカンよりも多く する。

不知火では、1回の施肥量を多くするよりも分施回数を増やして樹勢維持向上に努める。

鶏ふん堆肥を複合肥料の代替とする場合は、窒素肥効は劣るものの、リン酸、カリの肥効が十分あるため、土づくりを兼ねて初春肥に施用する。他の時期は窒素とカリ中心の施肥とする。

なお、他の中晩生カンキツ類にも応用ができる。

施肥設計の実際

表 3 に示す鶏ふん堆肥を用いて、初春肥において 5kg の窒素を代替する場合、1-2)使用のポイント $(2 \land ^\circ -)^\circ$)に基づいて施用量を計算すると、現物施用量は 660kg/10a である。この場合、窒素 5kg、リン酸 13kg、カリ 9kg が含まれる(表 10)。よって、カリは減肥でき、リン酸施肥は省くことができる。

表10 鶏ふん堆肥利用における不知火の施肥設計例(kg/10a)

(目標収量:3t/10a)

$\frac{1}{1}$										
施用時期 -		基準施肥量				鶏ふん堆肥利用の施肥設計例				
		窒素	リン酸	カリ		窒素	リン酸	カリ	備考	
初春肥	(2月下旬)	5	2.5	3		5	13	9	鶏ふん堆肥	
春肥	(4月下旬)	5	2.5	3		5	0	0		
夏肥	(6月上旬)	5	2.5	3	\Box	5	0	3		
初秋肥	(9月上旬)	5	2.5	3	<u> </u>	5	0	3		
秋肥	(10月下旬)	5	2.5	3		5	0	0		
合計	•	25	12.5	15		25	13	15		

注) 現物当たり窒素1.5%の鶏ふん堆肥660kg/10a施用の場合

この施肥設計には石灰資材約50kgが含まれる

(2)ウメ

施肥のポイント

ウメの施肥は、実肥、礼肥、基肥の年間3時期に分けて行う。施肥効率を高めるには、実肥は比較的速効的な肥料を4月から5月に2回に分施し、礼肥は完熟果収穫では収穫前に施肥し、基肥は9月下旬から10月上旬の秋雨期までに施肥する。

鶏ふん堆肥を複合肥料の代替えとする場合は、窒素肥効は劣るがリン酸、カリの含有成分が高いことや、礼肥に施肥すると完熟果収穫ではネット敷設や収穫運搬作業時の衛生面や施肥後の臭いが問題となるため、基肥での施用が適する。他の施肥時期では窒素、カリ中心の施肥とする。

施肥設計の実際

表 3 に示す鶏ふん堆肥を用いて、基肥窒素の 100%である 7.5 kg の窒素を代替する場合、1-2)使用のポイント($2 \ ^\circ - ^\circ ^\circ$)に基づいて施用量を計算すると、現物施用量は 1,000 kg/10a となる。しかし、カリの施肥量 6.6 kg を上回り過剰施肥となるため、カリの施肥量 6.6 kg に基づき再計算を行うと、現物施用量は 500 kg/10a である。この場合、窒素 3.75 kg、リン酸 10 kg、カリ 6.7 kg が含まれる (表 11)。よって、リン酸、カリは減肥できる。

表11 鶏ふん堆肥利用における施肥設計例(kg/10a)					(目標収量:2t/10a)				
	基準施肥量				鶏ふん堆肥利用の施肥設計例				
旭州时期 -	窒素	リン酸	カリ		窒素	リン酸	カリ	備考	
実肥1 (4月上中旬)	3.8	2.1	6.6		3.8	2	6.6		
実肥2 (5月上中旬)	3.8	2.1	3.3		3.8	2	3.3		
礼肥 (6月下旬~ 7月上旬)	10	5.6	5.5	\Box	10	0	5.4		
基肥 (9月下旬~ 10月上旬)	7.5	4.2	6.6		3.75 3.75	<u>0</u> 10	0 6.7	鶏ふん堆肥	
A ±1									

<u>合計</u> 25 14 22 注)現物当たり窒素1.5%の鶏ふん堆肥500kg/10a施用の場合 この施肥設計には石灰資材約50kgが含まれる