竹材を使用した籠目耐震壁の開発に関する基礎的研究について

その4 - 籠目耐震壁の復元力特性

竹材	籠目	耐震壁
繰り返し水平加力実験	復元力特性	壁倍率

1. はじめに

既報 ¹⁾²において、籠目耐震壁ユニットの力学的性状について明らかにしてきた。特に既報 2 での繰り返しせん断試験の結果、剛性(P_{120})と最大耐力の 2/3 から求めた壁倍率 ³⁾が 2.0 あり、耐震要素としての可能性があることを示した。

そこで本報は、籠目耐震壁ユニットを組み込んだ耐震壁 (以下籠目耐震壁という)を試作し、面内繰り返しせん断 試験を行い、限界耐力計算には不可欠な復元力特性と簡易 設計や耐震診断に必要な壁倍率を求めることを目的とする。

また、籠目耐震壁の構成要素(軸組、枠、割竹籠目編面 材)の耐震性能への寄与の度合いを調査する。

さらに、籠目耐震壁の光や風を通す特徴を活かして、開 口部の機能を大きく損なうことのない耐震補強材としての 籠目耐震壁の有効性についても検討する。

2. 面内繰り返しせん断試験

2.1 試験体

図1に試験体の軸組の基本寸法および基本仕様を示す。 材料は、軸組(柱、梁、土台、横桟)に、すべて E90 等級 のスギ製材を用い、籠目耐震壁ユニットは既報¹⁾²⁾と同様の

正会員	〇木村	文則*
同	谷口	与史也**

仕様とした。また写真1の(i)~(iii)に示すように柱と土 台、梁および横桟との仕口部は長柄差し、ケヤキの込み栓 締めとし、籠目耐震壁ユニットの軸組への取り付けは、写 真1(iv)に示すように、M16ボルト締め2ヶ所とした。

試験体は、図2に示すように4体試作した。試験体1~ 3は、構成要素の耐震性能への寄与を調査するためのもの であり、試験体4は、既存建物の全面開口部への耐震補強 を想定したものである。

2.2 試験方法

試験は、無載荷式で、土台の浮き上がりを防止するため、 土台を載荷装置固定枠H形鋼に M16 ボルトで4ヶ所固定し、 静的な水平加力面内せん断試験を行った。加力方法は正負 交番繰り返し加力とし、繰り返しは見かけのせん断変形角 が 1/450, 1/300, 1/200, 1/150, 1/100, 1/75, 1/50, 1/15rad の正負変形時に行い、同一変形段階で3回の繰り返 し加力を行った。荷重測定はロードセルで行い、変位測定 は、梁材の水平方向変位をワイヤー型変位計で、土台の水 平方向変位および左右の柱の脚部の鉛直方向変位を変位計 で行った。また測定は、柱、梁、土台とも軸芯で行った。 写真2に実験風景を示す。

On The Development of KAGOME Earthquake Resisting Wall by Bamboo. Part4-Hysteretic characteristics of KAGOME Earthquake Resisting Wall. KIMURA Fuminori, TANIGUCHI Yoshiya

3. 結果と考案

3.1 破壊性状

試験体1、2は、図3および図4に示すようにせん断変 形角が 1/15rad 近くまで耐力の上昇があり、その後木が割 れるような大きな音がし耐力の上昇が止まった。実験後、 解体してみると、写真3に示すように、柱の枘と土台に込 み栓による割れが発生していた。

試験体3、4は、図3および図4に示すようにせん断変 形角が 1/60rad 近くまで耐力の上昇があり、その後接着部 が剥離し、1/40rad 付近で写真3に示すように大半の接着部 が剥離し急激な耐力低下を生じた。この現象は既報2での 籠目耐震壁ユニット単体試験と同様であった。ただ、今回 は最上層で、写真3に示すように割竹の破断がみられた。

込み栓は、全試験体で、目立った損傷は見られなかった。 3.2 壁倍率

実験より得られた荷重-変形角関係から求めた壁倍率³⁾ を表1に示す。試験体1(軸組のみ)は約0.5、試験体2

(軸組+枠)は約1.0、試験体3(壁タイプ)は約2.5で構 造用合板(厚さ 5mm 以上)相当である。壁倍率への枠の寄 与は 0.5 で、割竹籠目編面材の寄与は 1.5 であった。試験 体4 (開口タイプ)の壁倍率は約2.0と土塗り壁に3つ割

試験体1(軸組のみ)

試験体3(壁タイプ)

図3 荷重一変形角関係

1/120 1/75 1/50 1/15

表1の壁倍率およい昇定用諸重												
試除休No	載荷	P _{max}	γ* ¹	Py	Pu	μ	Ds	$0.2 P_u / D_s$	$P_{max} \times 2/3$	P ₁₂₀	壁倍	F率 ^{*2}
司以词史 [平110.	方向	(kN)	(rad)	(kN)	(kN)			(kN)	(kN)	(kN)		
試験体1	+	4.70	1/17	3.36	4.69	1.39	0.75	1.25	3.13	0.70	0.39	(0.49)
(軸組のみ)	—	-5.10	-1/15	2.55	4.43	1.77	0.63	1.41	-3.40	-1.00	0.56	(0.40)
試験体2	+	5.70	1/20	2.93	5.22	2.28	0.53	1.97	3.80	1.80	1.01	(0.00)
(軸組+枠)	—	-5.80	-1/17	3.43	5.12	2.21	0.53	1.92	-3.87	-1.70	0.95	(0.98)
試験体3 ^{*3}	+	8.20	1/64	4.53	5.44	9.03	0.24	4.49	5.47	5.80	2.52	(2 37)
(壁タイプ)	—	-9.00	-1/57	7.34	5.59	6.76	0.28	3.95	-6.00	-4.70	2.22	(2.07)
試験体4 ^{*3}	+	6.30	-1/59	3.64	5.51	6.26	0.31	3.61	4.20	3.80	2.02	(1.98)
(開口タイプ)	—	-7.10	-1/49	4.39	6.01	4.65	0.35	3.46	-4.73	-3.60	1.94	(1.50)
*1 P _{max} 時の見掛	けのせ	ん断変用	形角				は壁倍	率決定因-	子を示す		()内は	平均值

*2 壁倍率=MIN(P_v, 0.2P_u/D_s, P_{max}×2/3, P₁₂₀)×α低減係数α=1.0とした

*3 終局変位は0.8Pmaxの変位であるが、その後荷重回復が見られたことから1/15radまで有効とした

*大阪市立大学大学院工学研究科 後期博士課程・工修

**大阪市立大学大学院工学研究科 教授・工博

筋かいを併用した壁倍率相当である。

また、壁倍率の決定因子は試験体1、2が剛性(P120)で、 試験体3、4の籠目耐震壁は靭性(0.2P_u/D_s)であった。

4. まとめ

新しく開発した籠目耐震壁ユニットを組み込んだ籠目耐 震壁について水平繰り返し試験を行い、以下の知見を得た。 (1) 籠目耐震壁の壁倍率は、壁タイプで約2.5、開口タイ プでも約2.0 あることから耐震壁および耐震補強材として 利用可能である。

(2) 籠目耐震壁は、壁タイプ、開口タイプともせん断変 形角が 1/60rad 程度で最大耐力に達し、その後 1/40rad 程 度で大半の接着部が剥離し、急激な耐力低下を生じたが、 最終耐力は試験体2の耐力を保持している。

参考文献

0.0

1/75 1/120 1

荷重(kN)

0.04 0.06

見掛けのせん断変形角(r

8.0

-6.0-

49

2,0

- -8,0-

試験体4(開ロタイプ)

- +

1) 木村文則、谷口与史也、坂 壽二:竹材を使用した籠目耐震壁の開 発に関する基礎的研究、日本建築学会大会学術講演便概集(近畿)構造 III, pp. 411-412, 2005.9

2) 木村文則、谷口与史也、坂 壽二: 竹材を使用した籠目耐震壁の開 発に関する基礎的研究について その2-繰り返しせん断実験および解 析検証、日本建築学会大会学術講演便概集(関東)構造Ⅲ、 pp. 261-262、2006.9

3) 河合直人:木造建築の構造設計[改正基準法と品確法]、建築技術、 3月号別冊6、pp44-45、2001.2

> 【謝辞】実験には、三重県科学技術振興セ ンターの岸久雄氏のご協力をいただいた。 ここに深く謝意を表する。また、本研究の 一部は和歌山県の平成 19 年度紀の国森づ

くり基金活用事業補助金の援助によった。

図4 各試験体の骨格曲線

*Graduate Student, Osaka City University

** Prof., Graduate School of Engineering, Osaka City University, Dr.Eng.