1111

薬食発第 1228001 号 平成 18 年 12 月 28 日

各都道府県知事 殿



日本薬局方外医薬品規格第三部の一部改正について

日本薬局方外医薬品規格第三部については、平成 13 年 12 月 25 日付け医薬発第 1411 号厚生労働省医薬局長通知により定めたところであるが、今般、その一部を改正し、追加収載を行う溶出試験を別添の通り取りまとめたので、貴管下関係業者に対し周知方御配慮願いたい。



# ダナゾールカプセル

### **Danazol Capsules**

溶出性 $\langle 6.10 \rangle$  本品 1 個をとり、試験液にポリソルベート 80 1g に水を加えて 50mL とした液 900mL を用い、パドル法(ただし、シンカーを用いる)により、毎分 100 回転で試験を行う。溶出試験を開始し、規定時間後、溶出液 20mL 以上をとり、孔径 0.45 $\mu$ m 以下のメンブランフィルターでろ過する。初めのろ液 10mL を除き、次のろ液 VmLを正確に量り、表示量に従い 1mL中にダナゾール( $C_{22}H_{27}NO_2$ )約 11 $\mu$ g を含む液となるようにポリソルベート 80 1g に水を加えて 50mL とした液を加えて正確に V'mL とし、試料溶液とする。別にダナゾール標準品を酸化リン(V)を乾燥剤として  $60^{\circ}$ で 4 時間減圧乾燥し、その約 22mg を精密に量り、エタノール(99.5)に溶かし、正確に 100mL とする。この液 5mL を正確に量り、ポリソルベート 80 1g に水を加えて 50mL とした液を加えて正確に 100mL とし、標準溶液とする。試料溶液及び標準溶液 10 $\mu$ L ずつを正確にとり、次の条件で液体クロマトグラフィー $\langle 2.01 \rangle$  により試験を行い、それぞれの液のダナゾールのピーク面積  $A_T$  及び  $A_S$  を測定する。

本品が溶出規格を満たすときは適合とする.

ダナゾール $(C_{22}H_{27}NO_2)$ の表示量に対する溶出率(%) =  $W_S \times (A_T/A_S) \times (V'/V) \times (1/C) \times 45$ 

 $W_{\rm S}$ : ダナゾール標準品の秤取量(mg)

C:1 カプセル中のダナゾール( $C_{22}H_{27}NO_2$ )の表示量(mg)

## 試験条件

検出器:紫外吸光光度計(測定波長:287nm)

カラム: 内径 4.6mm, 長さ 15cm のステンレス管に 5μm の液体クロマトグラフィー用オクタデシルシリル化シリカゲルを充てんする.

カラム温度:40℃付近の一定温度

移動相:アセトニトリル/0.05 mol/L リン酸二水素アンモニウム試液/テトラヒドロフラン(12:9:1)

流量:ダナゾールの保持時間が約8分になるように調整する.

# システム適合性

システムの性能:標準溶液  $10\mu$ L につき、上記の条件で操作するとき、ダナゾールのピークの理論段数及びシンメトリー係数は、それぞれ 2000 段以上、3.0 以下である.

システムの再現性:標準溶液 10μL につき,上記の条件で試験を 6 回繰り返

すとき、ダナゾールのピーク面積の相対標準偏差は2.0%以下である.

溶出規格

| 表示量   | 規定時間 | 溶出率   |
|-------|------|-------|
| 100mg | 90分  | 80%以上 |

ダナゾール標準品 「ダナゾール」. ただし、乾燥したものを定量するとき、ダナゾール( $C_{22}H_{27}NO_2$ ) 99.0 % 以上を含むもの.

# テプレノン細粒

# **Teprenone Fine Granules**

溶出性〈6.10〉 本品の表示量に従いテプレノン( $C_{23}H_{38}O$ )約 50mg に対応する量を精密に量り、試験液にラウリル硫酸ナトリウムの pH6.8 のリン酸水素二ナトリウム・クエン酸緩衝液溶液( $1\rightarrow 50$ )900mL を用い、パドル法により、毎分 50 回転で試験を行う.溶出試験を開始し、規定時間後、溶出液 20mL 以上をとり、孔径約  $20\mu m$  のポリエステル繊維を積層したフィルターでろ過する.初めのろ液 10mL を除き、次のろ液を試料溶液とする.別にテプレノン標準品約 28mg を精密に量り、エタノール(99.5)に溶かし、正確に 50mL とする.この液 5mL を正確に量り、ラウリル硫酸ナトリウムの pH6.8 のリン酸水素二ナトリウム・クエン酸緩衝液溶液( $1\rightarrow 50$ )を加えて正確に 50mL とし、標準溶液とする.試料溶液及び標準溶液  $10\mu L$  ずつを正確にとり、次の条件で液体クロマトグラフィー〈2.01〉により試験を行い、それぞれの液のテプレノンのモノシス体のピーク面積  $A_{Ta}$  及び  $A_{Sa}$  並びにテプレノンのオールトランス体のピーク面積  $A_{Tb}$  及び  $A_{Sb}$  を測定する.

本品が溶出規格を満たすときは適合とする.

テプレノン(C23H38O)の表示量に対する溶出率(%)

 $= (W_S/W_T) \times \{(A_{Ta} + A_{Tb})/(A_{Sa} + A_{Sb})\} \times (1/C) \times 180$ 

Ws:テプレノン標準品の量(mg)

W<sub>T</sub>: テプレノン細粒の秤取量(g)

C:1g中のテプレノン( $C_{23}H_{38}O$ )の表示量(mg)

#### 試験条件

検出器:紫外吸光光度計(測定波長:210nm)

カラム: 内径 4.6mm, 長さ 15cm のステンレス管に 5μm の液体クロマトグラフィー用オクタデシルシリル化シリカゲルを充てんする.

カラム温度:40℃付近の一定温度

移動相:アセトニトリル/水混液(87:13)

流量: テプレノンのオールトランス体の保持時間が約8分になるように調整する.

#### システム適合性

システムの性能:標準溶液  $10\mu$ L につき、上記の条件で操作するとき、テプレノンのモノシス体、テプレノンのオールトランス体の順に溶出し、その分離度は 1.0 以上である.

システムの再現性:標準溶液 10µL につき、上記の条件で試験を 6 回繰り返

すとき、テプレノンのモノシス体のピーク面積とテプレノンのオールトランス体のピーク面積の和の相対標準偏差は1.5%以下である.

溶出規格

| 表示量     | 規定時間 | 溶出率   | ĺ |
|---------|------|-------|---|
| 100mg/g | 15 分 | 70%以上 | ŀ |

テプレノン標準品  $C_{23}H_{38}O$ : 330.55 (9E,13E)-6,10,14,18-テトラメチル-5,9,13,17-ノナデカテトラエン-2-オンの幾何異性体混合物で,下記の規格に適合するもの. 性状 本品は無色~微黄色澄明の油状の液である.

確認試験 本品につき、赤外吸収スペクトル測定法〈2.25〉の液膜法により試験を行うとき、波数 1718cm<sup>-1</sup>、1442cm<sup>-1</sup>、1358cm<sup>-1</sup>及び 1158cm<sup>-1</sup>付近に吸収を認める.

#### 類縁物質

(1) 本品 20mg をヘキサン 4mL に溶かし、試料溶液とする.この液 1mL を正確に量り、ヘキサンを加えて正確に 20mL とする.この液 1mL を正確に量り、ヘキサンを加えて正確に 10mL とし、標準溶液とする.試料溶液及び標準溶液 4μL につき、次の条件でガスクロマトグラフィー〈2.02〉により試験を行う.それぞれの液の各々のピーク面積を自動積分法により測定するとき、試料溶液のテプレノンのモノシス体及びテプレノンのオールトランス体以外のピークの合計面積は、標準溶液のテプレノンのモノシス体のピーク面積とテプレノンのオールトランス体のピーク面積の和より大きくない.

#### 試験条件

検出器:水素炎イオン化検出器

カラム: 内径 4mm, 長さ 2m のガラス管にガスクロマトグラフィー用ポリエチレングリコール 2-ニトロテレフタレートを 149~177μm のガスクロマトグラフィー用ケイソウ土に 5%の割合で被覆したものを充てんする.

カラム温度:210℃付近の一定温度

キャリヤーガス:窒素又はヘリウム

流量: テプレノンのオールトランス体の保持時間が約 19 分になるように調整する.

面積測定範囲:溶媒ピークの後からテプレノンのオールトランス体の保持 時間の約2倍の範囲

#### システム適合性

検出の確認:標準溶液 2mL を正確に量り、ヘキサンを加えて正確に 10mL とする. この液  $4\mu L$  から得たテプレノンのモノシス体のピーク面積とテプレノンのオールトランス体のピーク面積の和が、標準溶液のテプレノ

- ンのモノシス体のピーク面積とテプレノンのオールトランス体のピーク 面積の和の 15~25%になることを確認する.
- システムの性能: 試料溶液 1mL にヘキサン 1mL を加えた液 1μL につき, 上記の条件で操作するとき, テプレノンのモノシス体, テプレノンのオールトランス体の順に流出し、その分離度は 1.1 以上である.
- システムの再現性:標準溶液  $4\mu$ L につき、上記の条件で試験を 6 回繰り返すとき、テプレノンのモノシス体のピーク面積とテプレノンのオールトランス体のピーク面積の和の相対標準偏差は 3.0%以下である.
- (2) 本品 10 mg を酢酸エチル 2 mL に溶かし、試料溶液とする.この液 1 mL を正確に量り、酢酸エチルを加えて正確に 20 mL とする.この液 1 mL を正確に量り、酢酸エチルを加えて正確に 10 mL とし、標準溶液とする.これらの液につき、薄層クロマトグラフィー〈2.03〉により試験を行う.試料溶液及び標準溶液  $10 \text{\muL}$  ずつを薄層クロマトグラフィー用シリカゲルを用いて調製した薄層板にスポットする.次にヘキサン/イソプロピルエーテル混液(7:3)を展開溶媒として約 10 cm 展開した後、薄層板を風乾する.これにリンモリブデン酸 n 水和物の酢酸(100)溶液( $1\rightarrow 20$ )を噴霧した後、 $90 ^{\circ}$ で 20 分間加熱するとき、試料溶液から得た主スポット以外のスポットは 2 個以下で、標準溶液から得たスポットより濃くない.
- 含量 99.0%以上. 定量法 本品約 0.7g を精密に量り、ヒドロキシルアミン試液 25mL を正確に加えて溶かし、還流冷却器をつけて 30 分間煮沸した後、直ちに氷冷する. 冷後、過量のヒドロキシルアミンを 0.5mol/L 塩酸で滴定〈2.50〉する(指示薬:ブロモフェノールブルー試液 10 滴). ただし、滴定の終点は液の紫色が黄緑色に変わるときとする. 同様の方法で空試験を行う.

0.5mol/L 塩酸 1mL=165.3mgC23H38O

- ポリエチレングリコール 2-ニトロテレフタレート, ガスクロマトグラフィー用 ガスクロマトグラフィー用に製造したもの.
- リン酸水素二ナトリウム・クエン酸緩衝液, pH 6.8 0.05mol/L リン酸水素二ナトリウム試液 1000mL に、クエン酸一水和物 5.25g を水に溶かして 1000mL とした液を加え、pH 6.8 に調整する.

# メフェナム酸カプセル Mefenamic Acid Capsules

溶出性〈6.10〉 本品 1 個をとり、試験液にラウリル硫酸ナトリウムの pH6.8 のリン酸水素二ナトリウム・クエン酸緩衝液溶液( $1\rightarrow 50$ )900mL を用い、パドル法(ただし、シンカーを用いる)により、毎分 100 回転で試験を行う.溶出試験を開始し、規定時間後、溶出液 20mL 以上をとり、孔径 0.5  $\mu$ m 以下のメンブランフィルターでろ過する.初めのろ液 10mL を除き、次のろ液 VmL を正確に量り、表示量に従い 1mL中にメフェナム酸( $C_{15}$ H $_{15}$ NO $_{2}$ )約 14  $\mu$ g を含む液となるように pH8.0 のリン酸水素二ナトリウム・クエン酸緩衝液を加えて正確に V'mL とし、試料溶液とする.別にメフェナム酸標準品を酸化リン(V)を乾燥剤として 4 時間減圧乾燥し、その約 28 mgを精密に量り、希水酸化ナトリウム試液に溶かし、正確に 100mL とする.この液5mLを正確に量り、pH8.0 のリン酸水素二ナトリウム・クエン酸緩衝液を加えて正確に 100mL とし、標準溶液とする.試料溶液及び標準溶液につき、pH8.0 のリン酸水素二ナトリウム・クエン酸緩衝液を対照とし、紫外可視吸光度測定法〈2.24〉により試験を行い、波長 285nm における吸光度  $A_T$  及び  $A_S$  を測定する.

本品が溶出規格を満たすときは適合とする.

メフェナム酸 $(C_{15}H_{15}NO_2)$ の表示量に対する溶出率(%) =  $W_S \times (A_T/A_S) \times (V'/V) \times (1/C) \times 45$ 

Ws:メフェナム酸標準品の秤取量(mg)

C:1カプセル中のメフェナム酸( $C_{15}H_{15}NO_2$ )の表示量(mg)

溶出規格

|  | 表示量   | 規定時間 | 溶出率   |
|--|-------|------|-------|
|  | 125mg | 45 分 | 80%以上 |
|  | 250mg | 45 分 | 75%以上 |

メフェナム酸標準品 メフェナム酸(日局).

- リン酸水素ニナトリウム・クエン酸緩衝液, pH6.8 0.05mol/L リン酸水素ニナトリウム試液 1000mL に, クエン酸一水和物 5.25g を水に溶かして 1000 mL とした液を加え, pH6.8 に調整する.
- リン酸水素二ナトリウム・クエン酸緩衝液, pH8.0 0.05mol/L リン酸水素二ナトリウム試液 1000ml に, クエン酸一水和物 5.25g を水に溶かして 1000mL とした液を加え, pH8.0 に調整する.

# イトラコナゾールカプセル Itraconazole Capsules

溶出性〈6.10〉 本品 1 個をとり、試験液に溶出試験第 1 液 900mL を用い、パドル法により、毎分 50 回転で試験を行う.溶出試験を開始し、規定時間後、溶出液 20mL 以上をとり、孔径 0.45 $\mu$ m 以下のメンブランフィルターでろ過する.初めのろ液 10mL を除き、次のろ液 VmL を正確に量り、表示量に従い 1mL 中にイトラコナゾール( $C_{35}$ H $_{38}$ Cl $_2$ N $_8$ O $_4$ )約 28 $\mu$ g を含む液となるように溶出試験第 1 液を加えて正確に V'mL とし、試料溶液とする.別にイトラコナゾール標準品を 105℃で 4時間乾燥し、その約 28mg を精密に量り、メタノールに溶かし、正確に 100mL とする.この液 5mL を正確に量り、溶出試験第 1 液を加えて正確に 50mL とし、標準溶液とする.試料溶液及び標準溶液につき、溶出試験第 1 液を対照とし、紫外可視吸光度測定法〈2.24〉により試験を行い、波長 255nm における吸光度  $A_T$  及び $A_S$  を測定する.

本品が溶出規格を満たすときは適合とする.

イトラコナゾール( $C_{35}H_{38}Cl_2 N_8O_4$ )の表示量に対する溶出率(%) =  $W_8 \times (A_T/A_S) \times (V'/V) \times (1/C) \times 90$ 

 $W_{\rm S}:$  イトラコナゾール標準品の秤取量(mg)

C:1 カプセル中のイトラコナゾール( $C_{35}H_{38}Cl_2$   $N_8O_4$ )の表示量(mg)

溶出規格

|      | , ,  |       |
|------|------|-------|
| 表示量  | 規定時間 | 溶出率   |
| 50mg | 90分  | 70%以上 |

イトラコナゾール標準品  $C_{35}H_{38}Cl_2N_8O_4$ : 705.63 ( $\pm$ )-1-セク-ブチル-4-{p-[4-(p-{[(2R\*,4S\*)-2-(2,4-ジクロロフェニル)-2-(1H-1,2,4-トリアゾール-1-イルメチル)-1,3-ジオキソラン-4-イル]メトキシ}フェニル)-1-ピペラジニル]フェニル}- $\Delta$ 2-1,2,4-トリアゾリン-5-オンで,下記の規格に適合するもの.必要な場合には次に示す方法により精製する.

精製法 イトラコナゾール 750g にメタノール/N,N-ジメチルホルムアミド混液 (25:8)3300mL を加えて加温して溶かし、温時ろ過し、ろ液をかき混ぜながら 室温になるまで冷却する. 沈殿をガラスろ過器(G3)で集め、80℃で減圧して一 夜乾燥する. この精製工程を更に1回繰り返す. 得られた沈殿物を1500mL の ジエチルエーテルに懸濁し、1時間よくかき混ぜる. 懸濁物をガラスろ過器(G3) で集め、80℃で一夜乾燥する.

性状 本品は白色の結晶又は結晶性の粉末である.

確認試験 本品 10 mg に 2-プロパノール 100 mL を加え,超音波を用いて分散しながら溶解する.この液 10 mL に 2-プロパノールを加えて 100 mL とした液につき,紫外可視吸光度測定法〈2.24〉により吸収スペクトルを測定するとき,波長  $261 \sim 265 \text{nm}$  に吸収の極大を示す.

類縁物質 本品 0.10g をメタノール/テトラヒドロフラン混液(1:1)10mL に溶かし、 試料溶液とする. この液 1mL を正確に量り、メタノール/テトラヒドロフラン 混液(1:1)を加えて正確に 100mL とする. この液 5mL を正確に量り、メタノール/テトラヒドロフラン混液(1:1)を加えて正確に 10mL とし、標準溶液とする. 試料溶液及び標準溶液 10μL ずつを正確にとり、次の条件で液体クロマトグラフィー〈2.01〉により試験を行う. それぞれの液の各々のピーク面積を自動積分法により測定するとき、試料溶液のイトラコナゾール以外のピークの面積は、標準溶液のピーク面積の 1/2 より大きくない. また試料溶液のイトラコナゾール以外のピークの合計面積は、標準溶液のイトラコナゾールのピーク面積の 2 倍より大きくない.

#### 試験条件

検出器:紫外吸光光度計(測定波長:225nm)

カラム: 内径 4.6mm, 長さ 10cm のステンレス管に 3μm の液体クロマトグラフィー用オクタデシルシリル化シリカゲルを充てんする.

カラム温度:30℃付近の一定温度

移動相 A:硫酸水素テトラブチルアンモニウム溶液 (17→625)

移動相 B: アセトニトリル

移動相の送液:移動相A及びBの混合比を次のように変えて濃度勾配制御する.

| 注入後の時間(分) | 移動相 A(vol%) | 移動相 B (vol%) |
|-----------|-------------|--------------|
| 0~20      | 80→50       | 20→50        |
| 20~25     | 50          | 50           |

流量: 毎分 1.5mL

面積測定範囲:イトラコナゾールの保持時間の約2倍の範囲

#### システム適合性

検出の確認:標準溶液 1mL を正確に量り、メタノール/テトラヒドロフラン混液(1:1)を加えて正確に 10mL とする. この液  $10\mu$  から得たイトラコナゾールのピーク面積が、標準溶液のイトラコナゾールのピーク面積の  $7\sim13\%$ になることを確認する.

システムの性能:本品 1 mg 及び硝酸ミコナゾール 1 mg をメタノール/テトラヒドロフラン混液(1:1) 20 ml に溶かす. この液  $10 \mu$ L につき、上記の条件で操作するとき、ミコナゾール、イトラコナゾールの順に溶出し、その分離度は2.0 以上である.

システムの再現性:標準溶液 10μL につき、上記の条件で試験を 6 回繰り返すとき、イトラコナゾールのピーク面積の相対標準偏差は 2.0%以下である.

乾燥減量〈2.41〉 0.5%以下 (1 g, 105℃, 4 時間).

含量 99.0%以上. 定量法 本品を乾燥し,その約 0.3g を精密に量り,2-ブタ ノン/酢酸(100)混液(7:1)70mL に溶かし,0.1mol/L 過塩素酸で滴定〈2.50〉する (電位差滴定法). 同様の方法で空試験を行い,補正する.

0.1 mol/L 過塩素酸 1mL = 35.28mg C<sub>35</sub>H<sub>38</sub>Cl<sub>2</sub>N<sub>8</sub>O<sub>4</sub>

硝酸ミコナゾール ミコナゾール硝酸塩 (日局).

# ジセチアミン塩酸塩錠 Dicethiamine Hydrochloride Tablets

セトチアミン塩酸塩錠

溶出性〈6.10〉 本品 1 個をとり、試験液に水 900mL を用い、パドル法により、毎分 50 回転で試験を行う。溶出試験を開始し、規定時間後、溶出液 20mL 以上をとり、孔径  $0.45\mu m$  以下のメンブランフィルターでろ過する。初めのろ液 10mL を除き、次のろ液 VmL を正確に量り、表示量に従い 1mL 中にジセチアミン塩酸塩水和物( $C_{18}H_{26}N_4O_6S\cdot HCl\cdot H_2O$ )約  $40\mu g$  を含む液となるように水を加えて正確に V' mL とする。この液 6mL を正確に量り、0.1mol/L 塩酸試液を加えて正確に 10mL とし、試料溶液とする。別にジセチアミン塩酸塩標準品(別途 0.2g につき、容量滴定法、直接滴定により水分〈2.48〉を測定しておく)約 24mg を精密に量り、水に溶かし、正確に 50mL とする。この液 5mL を正確に量り、0.1mol/L 塩酸試液 40mL を加えた後、水を加えて正確に 100mL とし、標準溶液とする。試料溶液及び標準溶液につき、水を対照とし、紫外可視吸光度測定法〈2.24〉により試験を行い、波長 240nm における吸光度  $A_T$  及び  $A_S$  を測定する。

本品が溶出規格を満たすときは適合とする.

ジセチアミン塩酸塩水和物( $C_{18}H_{26}N_4O_6S\cdot HCl\cdot H_2O$ )の表示量に対する溶出率(%) =  $W_S\times (A_T/A_S)\times (V'/V)\times (1/C)\times 150\times 1.039$ 

 $W_{\rm S}$ : 脱水物に換算したジセチアミン塩酸塩標準品の秤取量 $({
m mg})$ 

C:1錠中のジセチアミン塩酸塩水和物( $C_{18}H_{26}N_4O_6S$ ・HCl・ $H_2O$ )の表示量(mg)

#### 溶出規格

| 表示量     | 規定時間 | 溶出率   |
|---------|------|-------|
| 35.65mg | 30分  | 80%以上 |

ジセチアミン塩酸塩標準品 「ジセチアミン塩酸塩水和物」. ただし、定量するとき、換算した脱水物に対し、ジセチアミン塩酸塩( $C_{18}H_{26}N_4O_6S\cdot HCl$ )99.0%以上を含むもの.

# プラバスタチンナトリウム細粒 Pravastatin Sodium Fine Granules

溶出性〈6.10〉 本品の表示量に従いプラバスタチンナトリウム( $C_{23}H_{35}NaO_7$ )約 5mg に対応する量を精密に量り、試験液に水 900mL を用い、パドル法により、毎分 50 回転で試験を行う. 溶出試験を開始し、規定時間後、溶出液 20mL 以上をとり、孔径  $0.45\mu m$  以下のメンブランフィルターでろ過する. 初めのろ液 10mL を除き、次のろ液を試料溶液とする. 別にプラバスタチン 1,1,3,3-テトラメチルブチルアンモニウム標準品 (別途 0.5g につき、容量滴定法、直接滴定により水分〈2.48〉を測定しておく)約 23mg を精密に量り、水に溶かし、正確に 100mL とする. この液 3mL を正確に量り、水を加えて正確に 100mL とし、標準溶液とする. 試料溶液及び標準溶液につき、紫外可視吸光度測定法〈2.24〉により試験を行い、波長 238nm における吸光度  $A_{T1}$  及び  $A_{S1}$  並びに 265nm における吸光度  $A_{T2}$  及び  $A_{S2}$  を測定する. 本品が溶出規格を満たすときは適合とする.

プラバスタチンナトリウム  $(C_{23}H_{35}NaO_7)$  の表示量に対する溶出率(%) =  $(W_S/W_T) \times \{(A_{T1}-A_{T2})/(A_{S1}-A_{S2})\} \times (1/C) \times 27 \times 0.806$ 

 $W_{S}$ : 脱水物に換算したプラバスタチン 1,1,3,3-テトラメチルブチルアンモニウム

標準品の秤取量 (mg)

WT:本品の秤取量(g)

C: 1g 中のプラバスタチンナトリウム(C<sub>23</sub>H<sub>35</sub>NaO<sub>7</sub>)の表示量(mg)

溶出規格

| 表示量    | 規定時間 | 溶出率   |
|--------|------|-------|
| 5mg/g  | 15 分 | 85%以上 |
| 10mg/g | 15 分 | 85%以上 |

## プラバスタチンナトリウム錠

#### **Pravastatin Sodium Tablets**

溶出性〈6.10〉 本品 1 個をとり、試験液に水 900mL を用い、パドル法により、毎分 50 回転で試験を行う。溶出試験を開始し、規定時間後、溶出液 20mL 以上をとり、孔径  $0.45 \mu m$  以下のメンブランフィルターでろ過する。初めのろ液  $10 \mu c$  を決のろ液  $10 \mu c$  を正確に量り、表示量に従い  $1 \mu c$  中にプラバスタチンナトリウム( $1 \mu c$  で)約  $1 \mu c$  を含む液となるように水を加えて正確に  $1 \mu c$  が加上とし、試料溶液とする。別にプラバスタチン  $1 \mu c$  ではまり水分〈 $1 \mu c$  を測定しておく)約  $1 \mu c$  を指密に量り、水に溶かし、正確に  $1 \mu c$  を測定しておく)約  $1 \mu c$  を指密に量り、水に溶かし、正確に  $1 \mu c$  である。この液  $1 \mu c$  を正確に量り、水を加えて正確に  $1 \mu c$  では、 点にない。 は料溶液及び標準溶液につき、紫外可視吸光度測定法〈 $1 \mu c$  により試験を行い、波長  $1 \mu c$  ではいるの光度  $1 \mu c$  ではいるの形式  $1 \mu c$  ではいるの光度  $1 \mu c$  ではいるの形式  $1 \mu c$  で

本品が溶出規格を満たすときは適合とする.

プラバスタチンナトリウム( $C_{23}H_{35}NaO_7$ )の表示量に対する溶出率(%) =  $W_S \times \{(A_{T1} - A_{T2})/(A_{S1} - A_{S2})\} \times (V'/V) \times (1/C) \times 27 \times 0.806$ 

 $W_{S}$ : 脱水物に換算したプラバスタチン 1,1,3,3-テトラメチルブチルアンモニウム 標準品の秤取量 (mg)

C:1錠中のプラバスタチンナトリウム( $C_{23}H_{35}NaO_7$ )の表示量(mg)

溶出規格

| 表示量  | 規定時間 | 溶出率   |
|------|------|-------|
| 5mg  | 15 分 | 85%以上 |
| 10mg | 30分  | 85%以上 |

# イノシンプラノベクス錠

#### **Inosine Pranobex Tablets**

溶出性〈6.10〉 本品 1 個をとり、試験液に水 900mL を用い、パドル法により、毎分 50 回転で試験を行う。溶出試験を開始し、規定時間後、溶出液 20mL 以上をとり、孔径  $0.45\mu m$  以下のメンブランフィルターでろ過する。初めのろ液 10mL を除き、次のろ液 VmL を正確に量り、表示量に従い 1mL 中にイノシンプラノベクス [ $C_{10}H_{12}N_4O_5 \cdot 3(C_9H_9NO_3 \cdot C_5H_{13}NO)$ ]約  $8.9\mu g$  を含む液となるように水を加えて正確に V'mL とし、試料溶液とする。別にイノシンプラノベクス標準品(別途 0.5g につき、容量滴定法、直接滴定により水分〈2.48〉を測定しておく)約 22mg を精密に量り、水に溶かし、正確に 100mL とする。この液 4mL を正確に量り、水を加えて正確に 100mL とし、標準溶液とする。試料溶液及び標準溶液につき、紫外可視吸光度測定法〈2.24〉により試験を行い、波長 258nm における吸光度  $A_7$  及び $A_8$  を測定する。

本品が溶出規格を満たすときは適合とする.

イノシンプラノベクス[ $C_{10}H_{12}N_4O_5 \cdot 3(C_9H_9NO_3 \cdot C_5H_{13}NO)$ ]の表示量に対する溶出率(%) =  $W_8 \times (A_T/A_S) \times (V'/V) \times (1/C) \times 36$ 

Ws:脱水物に換算したイノシンプラノベクス標準品の量(mg)

C:1錠中のイノシンプラノベクス[ $C_{10}H_{12}N_4O_5\cdot 3(C_9H_9NO_3\cdot C_5H_{13}NO)$ ]の表示量(mg)

溶出規格

| 表示量   | 規定時間 | 溶出率   |
|-------|------|-------|
| 400mg | 90分  | 75%以上 |

イノシンプラノベクス標準品  $C_{10}H_{12}N_4O_5 \cdot 3(C_9H_9NO_3 \cdot C_5H_{13}NO)$ : 1115.23 1:3 complex of inosine and 2- hydroxypropyl-dimethylammonium 4-acetamidobenzoate で、下記の規格に適合するもの.

性状 本品は白色~微黄白色の結晶性の粉末である.

#### 確認試験

- (1)本品の水溶液(1→80000)につき、紫外可視吸光度測定法〈2.24〉により吸収スペクトルを測定するとき、波長 256~260nm に吸収の極大を示す.
- (2)本品につき,赤外吸収スペクトル測定法〈2.25〉の臭化カリウム錠剤法により測定するとき,3140cm<sup>-1</sup>,1690cm<sup>-1</sup>,1600cm<sup>-1</sup>,1520cm<sup>-1</sup>,1260cm<sup>-1</sup>及び1160cm<sup>-1</sup>に吸収を認める.

旋光度  $\langle 2.49 \rangle$   $\left[\alpha\right]^{\frac{20}{D}}:-11\sim-15^{\circ}$  (脱水物に換算したもの 1g, 水, 20mL, 100mm).

類縁物質 本品 25mg を移動相に溶かし、正確に 50mL とし、試料溶液とする.別に 4-アミノ 安息香酸 20mg を移動相に溶かし、正確に 100mL とする.この液 3mL を正確に量り、移動相を加えて正確に 50mL とする.更にこの液 2.5mL を正確に量り、移動相を加えて正確に 20mL とし、標準溶液とする.試料溶液及び標準溶液  $5\mu$ L ずつを正確にとり、次の条件で液体クロマトグラフィー〈2.01〉により試験を行う.それぞれの液の各々のピーク高さを測定するとき、試料溶液のイノシン及び 4-アセトアミノ 安息香酸以外のピーク高さは、標準溶液の 4-アミノ 安息香酸のピーク高さより大きくない.

#### 試験条件

検出器,カラム、カラム温度、移動相及び流量は定量法(1)の試験条件を準用する.

面積測定範囲:溶媒のピークの後から 4-アセトアミノ安息香酸の保持時間 の約3倍の範囲

# システム適合性

検出の確認:標準溶液 4mL を正確に量り、移動相を加えて正確に 20mL とする. この液  $5\mu L$  から得た 4-アミノ安息香酸のピーク高さが、標準溶液の 4-アミノ安息香酸のピーク高さの  $10\sim30\%$ になることを確認する.

システムの性能:イノシン標準品 20mg 及びフタル酸 90mg を移動相 100mL に溶かす. この液  $5\mu L$  につき、上記の条件で操作するとき、イノシン、フタル酸の順に溶出し、その分離度は 10 以上である.

システムの再現性:標準溶液  $5\mu$ Lにつき、上記の条件で試験を 6 回繰り返すとき、4-アミノ安息香酸のピーク高さの相対標準偏差は 2%以下である.

水分〈2.48〉 0.5%以下(0.5g, 容量滴定法, 直接滴定).

強熱残分〈2.44〉 0.1%以下(1g).

含量 換算した脱水物に対して、イノシン( $C_{10}H_{12}N_4O_5$ )23.5~25.5%、4-アセトアミノ安息香酸( $C_9H_9NO_3$ )47.5~49.5%及びジメチルアミノ-2-プロパノール ( $C_5H_{13}NO$ )26.5~28.5%を含む、また、それらの合計は99.0%以上を含む.

# 定量法

(1)イノシン及び 4-アセトアミノ安息香酸 本品約 50mg を精密に量り,移動相に溶かし,50mL とする. この液 5mL を正確に量り,内標準溶液 20mL を正確に加え,移動相を加えて 50mL とし,試料溶液とする. 別にイノシン標準品を  $105^{\circ}$  で 3 時間乾燥し,その約 25mg を精密に量り,移動相に溶かし,正確に 100mL とし,標準原液(1)とする. 別に 4-アセトアミノ安息香酸標準品約 25mg を精密に量り,移動相に溶かし,正確に 100mL とし,標準原液(2)とする. 標準原液(1)5mL 及び標準原液(2)10mL を正確に量り,内標準溶液 20mL を正確に

加え、移動相を加えて 50mL とし、標準溶液とする. 試料溶液及び標準溶液  $5\mu$ L につき、次の条件で液体クロマトグラフィー〈2.01〉により試験を行い、内標準物質のピーク高さに対するイノシン及び4-アセトアミノ安息香酸のピーク高さの比OTI、OTI、OTI、OTI、OTI、OTI、OTI、OTI、OTI、OTI、OTI、OTI、OTI、OTI、OTI、OTI、OTI、OTI、OTI、OTI、OTI、OTI、OTI、OTI、OTI、OTI、OTI、OTI を求める.

イノシン( $C_{10}H_{12}N_4O_5$ )の量(mg)= $W_{S1}\times (Q_{T1}/Q_{S1})\times (1/2)$ 4-アセトアミノ安息香酸( $C_9H_9NO_3$ )の量(mg)= $W_{S2}\times (Q_{T2}/Q_{S2})$ 

 $W_{S1}: イノシン標準品の量(mg)$ 

W<sub>S2</sub>: 4-アセトアミノ安息香酸標準品の量(mg)

内標準溶液 フタル酸の移動相溶液(1→2000)

試験条件

検出器:紫外吸光光度計(測定波長:254nm)

カラム: 内径 4.6mm, 長さ 15cm のステンレス管に 5μm の液体クロマトグラフィー用オクタデシルシリル化シリカゲルを充てんする.

カラム温度:35℃付近の一定温度

移動相: リン酸二水素ナトリウム二水和物 15.6g に水を加えて 1000mL と する. この液 930mL にアセトニトリル 70mL を加える.

流量:4-アセトアミノ安息香酸の保持時間が約12分になるように調整する. システム適合性

システムの性能: イノシン標準品 20mg 及びフタル酸 90mg を移動相 100mL に溶かす. この液  $5\mu$ L につき、上記の条件で操作するとき、イノシン、フタル酸の順に溶出し、その分離度は 10 以上である.

システムの再現性:標準溶液  $5\mu$ L につき、上記の条件で試験を 6 回繰り返すとき、内標準物質のピーク高さに対するイノシン及び 4-アセトアミノ安息香酸のピーク高さの比の相対標準偏差はそれぞれ 2%以下である.

(2) ジメチルアミノ-2-プロパノール 本品約 0.1g を精密に量り,水 1mL に溶かし、内標準溶液 9mL を正確に加え、試料溶液とする.別にジメチルアミノ-2-プロパノール標準品(別途 1g につき、容量滴定法、直接滴定により水分〈2.48〉を測定しておく)約 0.3g を精密に量り、水を加えて正確に 10mL とする.この液 1mL を正確に量り、内標準溶液 9mL を正確に加え、標準溶液とする.試料溶液及び標準溶液  $2\mu$ L につき、次の条件でガスクロマトグラフィー〈2.02〉により試験を行い、内標準物質のピーク高さに対するジメチルアミノ-2-プロパノールのピーク面積の比  $O_T$  及び  $O_S$  を求める.

ジメチルアミノ-2-プロパノール( $C_5H_{13}NO$ )の量(mg)= $W_8 \times (Q_T/Q_S) \times (1/10)$   $W_S$ : 脱水物に換算したジメチルアミノ-2-プロパノール標準品の量(mg) 内標準溶液 n-アミルアルコール約 0.6g にアセトンを加えて 200mL とする.

#### 試験条件

検出器:水素炎イオン化検出器

カラム: 内径 3mm, 長さ 2m のガラス管に  $149\sim177\mu m$  のガスクロマトグラフィー用ケイソウ土にポリエチレングリコール 4000 を 10%及び水酸化カリウムを 3%の割合で被覆したものを充てんする.

カラム温度:110℃付近の一定温度

キャリヤーガス:窒素

流量:ジメチルアミノ-2-プロパノールの保持時間が約4分になるように調整する.

#### システム適合性

システムの性能:標準溶液  $2\mu$ L につき、上記の条件で操作するとき、ジメチルアミノ-2-プロパノール、n-アミルアルコールの順に流出し、その分離度は5以上である.

システムの再現性:標準溶液 5μL につき、上記の条件で試験を 6 回繰り返すとき、内標準物質のピーク面積に対するジメチルアミノ-2-プロパノールのピーク面積の比の相対標準偏差は 2%以下である.

4-アセトアミノ安息香酸標準品 C<sub>9</sub>H<sub>9</sub>NO<sub>3</sub>: 179.17 4-acetamidobenzoic acid 性状 本品は白色の結晶性の粉末である.

確認試験 本品につき,赤外吸収スペクトル測定法〈2.25〉の臭化カリウム錠剤 法により測定するとき, $3300 \text{cm}^{-1}$ , $1690 \text{cm}^{-1}$ , $1520 \text{cm}^{-1}$ , $1425 \text{cm}^{-1}$ , $1260 \text{cm}^{-1}$ 及び  $1180 \text{cm}^{-1}$ 付近に吸収を認める.

融点〈2.60〉 256~260℃

類縁物質 本品 25mg を移動相 100mL に溶かし、試料溶液とする.この液 2mL を正確に量り、移動相を加えて正確に 100mL とする. 更にこの液 5mL を正確に量り、移動相を加えて正確に 50mL とし、標準溶液とする. 試料溶液及び標準溶液  $5\mu$ L ずつを正確にとり、次の条件で液体クロマトグラフィー〈2.01〉により試験を行う. それぞれの液の各々のピーク高さを測定するとき、試料溶液の4-アセトアミノ安息香酸以外のピーク高さは、標準溶液の4-アセトアミノ安息香酸のピーク高さより高くない.

#### 試験条件

検出器:紫外吸光光度計(測定波長:254nm)

カラム: 内径 4.6mm, 長さ 15cm のステンレス管に 5μm の液体クロマトグラフィー用オクタデシルシリル化シリカゲルを充てんする.

カラム温度:35℃付近の一定温度

移動相: リン酸二水素ナトリウム二水和物 15.6g に水を加えて 1000mL とする. この液 930mL にアセトニトリル 70mL を加える.

流量: 4-アセトアミノ安息香酸の保持時間が約12分になるように調整する. 面積測定範囲:溶媒のピークの後から4-アセトアミノ安息香酸の保持時間の約3倍の範囲

#### システム適合性

システムの性能: イノシン標準品 20mg 及びフタル酸 90mg を移動相に溶かし 100mL とする. この液  $5\mu L$  につき、上記の条件で操作するとき、イノシン、フタル酸の順に溶出し、その分離度は 10 以上である.

システムの再現性:標準溶液  $5\mu$ L につき、上記の条件で試験を 6 回繰り返すとき、4-アセトアミノ安息香酸のピーク高さの相対標準偏差は 2%以下である.

乾燥減量〈2.41〉 0.5%以下(0.5g, 60℃, 減圧, 3 時間, シリカゲル).

含量 99.0%以上. 定量法 本品約 0.3g を精密に量り, エタノール(99.5)50mL に溶かし, 0.1mol/L 水酸化ナトリウム液で滴定〈2.50〉する(指示薬:フェノールフタレイン試液 3 滴). 同様の方法で空試験を行い, 補正する.

0.1mol/L 水酸化ナトリウム液 1mL=17.92mg CoHoNO3

ジメチルアミノ-2-プロパノール標準品 C<sub>5</sub>H<sub>13</sub>NO: 103.16 1-dimethylamino-2-propanol

性状 本品は無色澄明の液で、特異なにおいがある.

確認試験 本品につき、赤外吸収スペクトル測定法〈2.25〉の液膜法により測定するとき、 $2780 \text{cm}^{-1}$ 、 $1460 \text{cm}^{-1}$ 、 $1260 \text{cm}^{-1}$ 、 $1040 \text{cm}^{-1}$  付近に吸収を認める.

比重〈2.56〉  $d_{20}^{20}: 0.849 \sim 0.853$ 

沸点〈2.57〉 120~124℃

類縁物質 本品 0.5µL につき,次の条件でガスクロマトグラフィー〈2.02〉により 試験を行い,各々のピーク面積を自動積分法により測定し,面積百分率法によりそれらの量を求めるとき,ジメチルアミノ-2-プロパノールのピーク以外のピークの合計面積は1%以下である.

#### 試験条件

検出器:水素炎イオン化検出器

カラム: 内径 3mm, 長さ 2m のガラス管に  $149\sim177\mu m$  のガスクロマトグラフィー用ケイソウ土にポリエチレングリコール 4000 を 10%及び水酸化カリウムを 3%の割合で被覆したものを充てんする.

カラム温度:110℃付近の一定温度

キャリヤーガス: 窒素

流量: ジメチルアミノ-2-プロパノールの保持時間が約4分になるように調整する.

面積測定範囲:空気のピークの後からジメチルアミノ-2-プロパノールの保持時間の約5倍の範囲

#### システム適合性

- 検出の確認:本品 1mL にアセトンを加えて 100mL とし、システム適合性 試験用溶液とする.システム適合性試験用溶液 2mL を正確に量り、アセトンを加えて正確に 10mL とする.この液  $0.5 \mu$ L から得たジメチルアミノ-2-プロパノールのピーク面積が、システム適合性試験用溶液のジメチルアミノ-2-プロパノールのピーク面積の  $10\sim30\%$ になることを確認する.
- システムの性能:本品 0.3g 及び n-アミルアルコール 0.3g をアセトン 25mL に溶かす. この液  $0.5\mu$ L につき、上記の条件で操作するとき、ジメチルアミノ-2-プロパノール、n-アミルアルコールの順に流出し、その分離度は5以上である.
- システムの再現性:システム適合性試験用溶液  $0.5\mu$ L につき、上記の条件で試験を 6 回繰り返すとき、ジメチルアミノ-2-プロパノールのピーク面積の相対標準偏差は 5.0%以下である.
- 水分〈2.48〉 2.0%以下(1g, 容量滴定法, 直接滴定).
- 含量 99.0%以上(脱水物換算). 定量法 本品約 2.0g を精密に量り,水 50mL を加え, 1mol/L 塩酸で滴定〈2.50〉する(指示薬:ブロモクレゾールグリン・メチルレッド試液 3 滴). 同様の方法で空試験を行い,補正する.

1mol/L 塩酸 1mL=103.2mg C<sub>5</sub>H<sub>13</sub>NO

# ヒドロキシカルバミドカプセル

# Hydroxycarbamide Capsules

本品が溶出規格を満たすときは適合とする.

ヒドロキシカルバミド(CH<sub>4</sub>N<sub>2</sub>O<sub>2</sub>)の表示量に対する溶出率(%)

 $= W_{S} \times (A_{T}/A_{S}) \times (V'/V) \times (1/C) \times 1800$ 

Ws:ヒドロキシカルバミド標準品の秤取量(mg)

C:1 カプセル中のヒドロキシカルバミド( $CH_4N_2O_2$ )の表示量(mg)

#### 試験条件

検出器:紫外吸光光度計 (測定波長:214nm)

カラム: 内径 4.6mm, 長さ 15cm のステンレス管に 5μm の液体クロマトグラ

フィー用オクタデシルシリル化シリカゲルを充てんする.

カラム温度:25℃付近の一定温度

移動相:水

流量:ヒドロキシカルバミドの保持時間が約2.5分になるように調整する.

#### システム適合性

システムの性能:標準溶液 5μL につき、上記の条件で操作するとき、ヒドロキシカルバミドのピークの理論段数及びシンメトリー係数は、それぞれ 2000 段以上、2.0 以下である.

システムの再現性:標準溶液 5µL につき、上記の条件で試験を6回繰り返すとき、ヒドロキシカルバミドのピーク面積の相対標準偏差は2.0%以下である.

溶出規格

| 表示量   | 規定時間 | 溶出率   |
|-------|------|-------|
| 500mg | 15 分 | 85%以上 |

ヒドロキシカルバミド標準品  $CH_4N_2O_2:76.05$  ヒドロキシカルバミドで、下記の 規格に適合するもの.

性状 本品は白色~微黄白色の結晶性の粉末である.

確認試験 本品につき,赤外吸収スペクトル測定法〈2.25〉の臭化カリウム錠剤 法により測定するとき,波数 3430cm<sup>-1</sup>,3330cm<sup>-1</sup>,1642cm<sup>-1</sup>,1591cm<sup>-1</sup> 及び 1409cm<sup>-1</sup>付近に吸収を認める.

類縁物質 本品 50.0mg を水に溶かし、正確に 5mL とし、試料溶液とする. 別に 尿素 10.0mg を水に溶かし、正確に 100mL とし、標準溶液とする. これらの液 につき、ろ紙クロマトグラフィーにより試験を行う. 等容量の 2-ブタノール及 び水を振り混ぜ、静置した液の下層を飽和溶媒、上層を展開溶媒とする. 高さ約 500mm の展開用容器(図)の下部に飽和溶媒を入れ、20~25℃で 24 時間放置し、容器内を蒸気で飽和させる. リン酸水素ニナトリウム十二水和物 50.1g 及びクエン酸一水和物 6.3g を水に溶かし 1000mL とした液に浸した後風乾した ろ紙に、試料溶液 100μL 及び標準溶液 20μL をスポットし、風乾する. ろ紙の上端を展開溶媒皿に固定し、展開用容器に入れ 1.5 時間放置する. 展開溶媒皿に展開溶媒を入れ、24 時間展開した後、ろ紙を風乾し、更に 24 時間展開し、再びろ紙を風乾する. これに 4-ジメチルアミノベンズアルデヒドのエタノール (95)/塩酸混液(49:1)溶液(1→100)を均等に噴霧した後、90℃で 1~2 分間加熱するとき、試料溶液から得た主スポット以外のスポットは 2 個以下であり、標準溶液から得たスポットより濃くない.

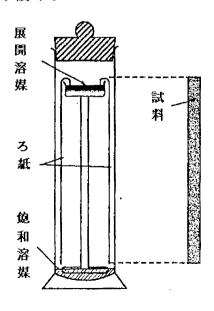



図 展開用容器

乾燥減量〈2.41〉 1.0%以下(1g, 減圧, 60℃, 3時間).

含量 99.0%以上. 定量法 本品を乾燥し、その約75mg を精密に量り、水に溶かして正確に25mL とする. この液5mL を正確にケルダールフラスコにとり、 窒素定量法  $\langle 1.08 \rangle$  により試験を行う.

0.005mol/L 硫酸 1mL = 0.7605mgCH<sub>4</sub>N<sub>2</sub>O<sub>2</sub>