和歌山県環境衛生研究センター年報

第 62 巻

(平成27年度)

和歌山県環境衛生研究センター

Annual Report

Of

Wakayama Prefectural Research Center of Environment and Public Health

No.62

2016

Wakayama Prefectural Research Center of Environment and Public Health 3-3-45, Sunayama-Minami, Wakayama, 640-8272, Japan このたび、平成27年度和歌山県環境衛生研究センター年報(第62巻)を刊行する運びとなりました。当誌は、当センターが行った行政・一般依頼を主とする衛生・環境分野の測定・検査事業の概要、調査研究及び発表業績等の成果をまとめたものです。今までは、「健康と環境を守る調査研究事業」につきまして、巻末に成果一覧として掲載していただけでしたが、今年度から調査終了事業は、その取りまとめ結果をⅢ調査研究に掲載することとしました。ご参考になれば幸いです。

さて、今年は、皆様ご存じのとおりリオオリンピック・パラリンピックが開催され、日本人選手の活躍もあって、非常に盛り上がり、4年後の東京開催が益々楽しみになってまいりました。一方、開催地ブラジルでのジカ熱流行を危惧し、参加を辞退する選手もおりましたが、今のところ2年前のデング熱のような国内発生はみられていないようです。しかし、ジカ熱をはじめとする熱帯地域の蚊媒介性感染症への対応にも、地方衛生研究所としての備えは十分しておかなければなりません。そういった「感染症に対応する体制の強化」を目的として感染症法が改正され、感染症発生動向調査に係るウイルス検査にも、食品検査などと同様に、この4月から法律に基づく精度管理が課せられるようになり、その対応にも総力を挙げて取り組んでいるところです。今後、有事における地方衛生研究所に求められる役割や、さらに地方衛生研究所相互の連携強化も今後ますます重要性を増してくると感じております。

また、当センター第二期中期計画に示した情報発信型事業のひとつである夏休み子ども科 学教室は、昨年に増してご好評をいただき、ご要望に応じきれない多数のご応募がございま した。今後、夏休みの恒例事業として定着し、子供達に科学の楽しさを体験してもらうとと もに、当センターの業務について知ってもらういい機会になればと思っています。

さらに、もうひとつの情報発信型事業として、本年度から放送大学和歌山学習センターと 共同で「身の回りの環境問題を科学する」と題し面接授業をスタートさせます。

私たちの身の回りに存在する多くの環境問題,例えばゴミ問題,水質汚濁,大気汚染等の実態を知り,またその問題を改善すべく,行政や研究所が,規制や監視技術をいかに使っているかを知っていただくことで,環境問題を正しく理解していただくことを目的としています。 放送大学生の皆様が,全国からこの和歌山に集まっていただくに値する授業にしなければと力を入れているところでございます。

厳しい財政事情の中、できることから積極的にチャレンジし確実に実施して、皆様のお役に立つセンターを目指し、職員一同更なる研鑽に努める所存ですので、なお一層のご協力を 賜り、ご指導・ご鞭撻のほどよろしくお願い申し上げます。

平成28年12月

目 次

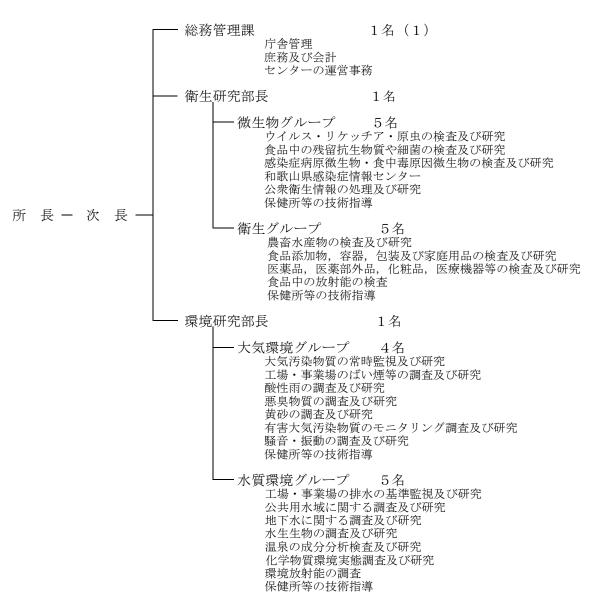
(業務編)

Ι	環境衛生研究セン	/ターの概要	
	1. 沿	直	1
	2.組 箱	哉 · · · · · · · · · · · · · · · · · · ·	2
	3. 事業費・施設等	F	3
П	事業概要		
	1. 測定検査等事業		
	1) 微生物グルー	プ	6
	2) 衛生グループ		12
	3) 大気環境グル	ープ	21
	4)水質環境グル	ープ	27
	2. 研修指導及び旅	歯設見学の実績・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	32
тт		(調査研究編)	
	[研 究 課 題	頁一覧	9.0
	平成27年及研允課題	<u>ā一見</u> ····································	33
IV	7 調 査 研 究		
14		要息するマダニ類のSFTSウイルス保有状況調査	
		最高 9 3 × 9 一類 03 13 9 7 ルス保有 4.0 6 調直 山文男,下野尚悦,松井由樹 ····································	3 5
	4年	4久分, 「 對 问 况 , 伍 开 山 恼	50
	2 和歌山県におに	する2015/2016シーズンのインフルエンザ流行状況について	
		+由樹, 下野尚悦, 寺杣文男 ************************************	40
	I >		10
	3. 和歌山県におけ	けるPM2.5の傾向	
		\$嘉一,野中卓,上野智子,大谷一夫 ·····	45
	4. 河川中の医薬品	品等汚染実態調査について	
	梶本	なかおり、奥本木の実、樋下勝彦、猿棒康量 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	52
	5. 洪水が底生動物	かに及ぼした影響と回復過程の調査	
	井上	上博美,猿棒康量,山中典子,奥村幸惠 · · · · · · · · · · · · · · · · · · ·	58
V	発表業績		
	誌上・学会・研究会	会等の発表	66
	I 資料		
	所内研究発表会の要	程	68

CONTENTS

[Originals]

1.	Survey of SFTS virus in ticks inhabiting the environs of Wakayama Prefecture Fumio Terasoma, Hisayoshi Shimono and Yuki Matsui	35
2.	Epidemic of influenza in Wakayama Prefecture during 2015/2016 season Yuki Matsui, Hisayoshi Shimono and Fumio Terasoma ······	40
3.	Trend of PM2.5 in Wakayama Prefecture Yoshikazu Oketani, Suguru Nonaka, Tomoko Ueno and Kazuo Otani	45
4.	Survey of pharmaceuticals and personal care products (PPCPs) in river water Kaori Kajimoto, Konomi Okumoto, Katsuhiko Hinoshita and Yasukazu Sarubo	52
5.	Investigation into flood effects upon benthos and recovery process Hiromi Inoue, Yasukazu Sarubo, Noriko Yamanaka and Sachie Okumura	58


I 環境衛生研究センターの概要

1 沿 革

- 明治13年4月 県警察本署 (現警察本部) に衛生課が設置され、和歌山市西汀丁の県庁内に化学を主とする衛生試験所 を設置、業務開始.
- 明治36年1月 衛生試験所(木造平屋建12坪)を建築.
- 明治36年3月 細菌検査室(木造平屋建36坪),動物飼育室(木造平屋建8坪)を建築.
- 昭和13年8月 和歌山市小松原通一丁目1番地(現県庁)に、衛生試験所(木造平屋建135坪)を新築し西汀丁より移転.
- 昭和14年1月 動物舎(木造平屋建9坪)を併設.
- 昭和17年11月 官制改正により内政部に移管.
- 昭和20年7月 戦災による施設全焼のため化学試験室は県工業指導所に、細菌検査室は住友病院内において急場の業務をとる.
- 昭和21年2月 教育民政部に移管.
- 昭和22年10月 県庁構内に衛生試験所(木造平屋建162坪)を建築.
- 昭和23年1月 衛生部創設により細菌検査室は予防課に、化学試験室は薬務課に、乳肉栄養検査室は公衆衛生課にそれ ぞれ移管.
- 昭和23年7月 動物舎(木造平屋建9坪)竣工.
- 昭和24年5月 衛生試験所(木造平屋建70坪)増築.
- 昭和25年9月 県衛生試験所設置規則により全施設を総合して、県衛生研究所として発足.
- 昭和40年6月 和歌山市美園町五丁目25番地へ一時移転.
- 昭和41年10月 東和歌山駅拡大建設に伴い和歌山市徒町1番地に総務課及び化学部、細菌部の内、ウイルス室は市内友 田町三丁目21番地の和歌山市医師会成人病センターに、細菌室は友田町三丁目1番地の和歌山市中央保 健所に、それぞれ移転.
- 昭和41年12月 和歌山県衛生研究所設置規則を改正し、総務課を庶務係、経理係に、細菌部を微生物部として、細菌室、 ウイルス室、疫学室に、化学部を理化学部として、化学室、食品室、薬品室に分け、公害部を新設し、 水質室、大気室、環境室を設置.
- 昭和42年8月 和歌山県立高等看護学院の庁舎新築移転により、和歌山市医師会成人病センターの微生物部ウイルス室 及び和歌山市中央保健所の微生物部細菌室を、それぞれ和歌山市徒町1番地旧県立高等看護学院に移転.
- 昭和44年2月 和歌山市湊東の坪271の2番地に県衛生研究所(鉄筋3階建延1,198.55m²)が竣工し移転.
- 昭和45年12月 衛生研究所公害部が独立して、公害研究所を設置.
- 昭和46年2月 公害研究所に県公害対策室直轄の大気汚染常時監視設備を設置.
- 昭和46年4月 県衛生研究所設置規則を改正して,理化学部を食品薬化学部とし,食品室,薬品化学室を,又生活環境 部を設置して,環境室,病理室を設置.
- 昭和47年1月 大気汚染常時監視設備が県企画部生活環境局公害対策室の直轄となる.
- 昭和47年11月 公害研究所を廃止して、県公害技術センターを設置、庶務課、大気部、水質部及び騒音振動部に、併せて公害対策室から大気汚染常時監視設備とその業務を引継ぎ、和歌山市湊東の坪271の3番地に竣工した新庁舎に移転。
- 昭和50年7月 公害技術センターの大気部の一部と騒音振動部を監視騒音部に改組.
- 昭和51年1月 住居表示変更により、衛生研究所は、和歌山市砂山南三丁目3番47号. 公害技術センターは、和歌山市砂山南三丁目3番45号となる.
- 昭和53年7月 公害行政の一元化に伴い産業廃棄物関連の調査研究業務は、公害技術センター水質部の業務となる.
- 昭和57年6月 公害技術センターは、県民局から衛生部に移管.
- 昭和58年4月 御坊市薗字円津255番地の4に御坊監視支所を開設.
- 昭和58年6月 機構改革により衛生研究所と公害技術センターを統合,衛生公害研究センターとなり,総務課,保健情報部,微生物部,生活理化学部,大気環境部,水質環境部及び御坊監視支所を置く.
- 昭和62年4月 保健環境部に移管.
- 平成2年1月 御坊監視支所を無人化とする.
- 平成8年4月 生活文化部に移管.
- 平成12年4月 環境生活部に移管.
- 平成15年4月 衛生公害研究センターの名称を環境衛生研究センターに改め、総務管理課、衛生研究部、環境研究部及 び御坊監視所を置く.衛生研究部に疫学グループ、微生物グループ、衛生グループを、環境研究部に大 気環境グループ、水質環境グループを置く.
- 平成18年4月 微生物グループに疫学グループを統合し、衛生研究部を2グループとする.
- 平成23年1月 西館耐震工事実施、太陽光パネル設置.
- 平成27年3月 御坊監視支所を廃止.

(1) 機構と事務分掌

H28.4.1現在

※ ()内は兼務職員を示す.

(2) 職員構成

H28.4.1 現在

									1120. 4. 1 96/1.
採 用 区 分	事	務	医	師	獣医師	薬 剤 師	環境技師	臨床技師	計
所 長							1		1
次 長	1								1
研究部長					1		1		2
総務管理課	1 (1)							1 (1)
微生物グループ						2	1	2	5
衛生グループ						2	3		5
大気環境グループ						1	3		4
水質環境グループ						1	4		5
計	2 (1)			1	6	1 3	2	24 (1)

注 ()内は,兼務職員

3 事業費・施設等

(1) 事業費等 (H27)

(千円)

事	業	名	決	算	額
環境衛生研究センター運営事業 センター機器整備事業 試験検査事業 健康と環境を守る調査研究事業 環境放射能水準調査事業 化学物質環境実態調査事業 行政依頼分等				14, 38, 1, 2, 12, 3, 47,	9 5 5 2 7 9 5 0 7 4 1 9 0 4 7 3 5 1 3 3 9
計				119,	8 9 7

(2) 依頼検査収入 (H27)

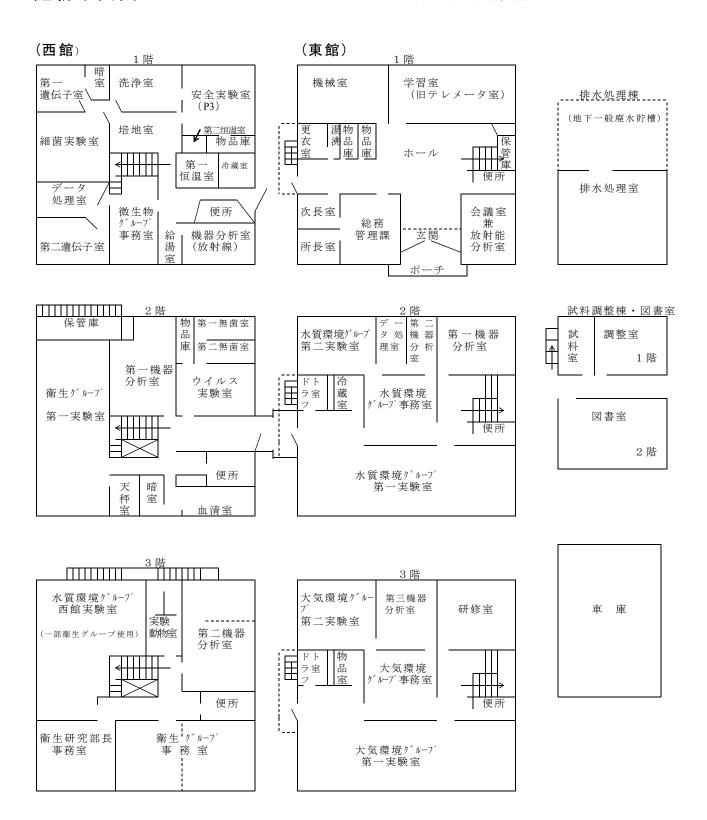
項目	件 数(件)	金 額 (円)
温 泉 試 験 食品・添加物・容器及び包装試験	$\begin{smallmatrix}1&4\\5&0&7\end{smallmatrix}$	1, 209, 410 1, 277, 430
計	5 2 1	2, 486, 840

(3) 施 設

所 在 地 積 a) 土 地 和歌山市砂山南三丁目3番45号 1, 993. 08 m²

b) 主な建物 ○東 館)

館(本構工造 鉄筋コンクリート造 3階建 屋上一部4階 建築面積 440. 48 m² 延面積附帯設備 1, 352. 53 m² 電気,都市ガス,給排水,空調 昭和47年10月 竣 工 費


91,782千円 ○排水処理棟

コンクリートブロック造 平屋建 地下水槽 31.40㎡ 40kl, 10kl 各1 電気,給排水 昭和50年11月 19,900千円 竣 工費 竣

庫 ○車 浩 鉄骨造 平屋造 建築面積 $45.0\,\mathrm{m}^2$ 工費 竣 昭和53年7月 総 1,859千円

○試料調整棟・ 構 造 図書室 コンクリートブロック造 2階建 延って、一種工 59. 68 m² 竣 工費 昭和56年3月 3,622千円

○西 館 構 鉄筋コンクリート造 3 階建 373.54㎡。 建築面積 延面積 1, 198. 55 m² 電気,都市ガス,給排水,空調昭和44年1月 附帯設備 総工費 57,600千円

(4) 主要機器一覧 (H28.3.31現在)

【微生物グループ】

機器名	型 式	数量	設置年月
リアルタイムPCR装置	Applied Biosystems 7900 HT Sequence Detecti	1	H14. 2
	on System		
超遠心機	日立工機 himac CP70MX	1	H14. 8
陰圧施設	日本医化機械 BH-P3-4A	1	H15.12
高圧蒸気滅菌装置	サクラ精機 ∑Ⅲ YRZ-0 06S	1	H18. 9
リアルタイムPCR装置	Applied Biosystems 7900 HT Fast Real-Time P	1	H21. 9
	CR System		
DNAシークエンサー	Applied Biosystems 3130 Genetic Analyzer	1	H22. 3
リアルタイム濁度測定装置	栄研化学 2A-320C	1	H22. 7
DNAシークエンサー	Applied Biosystems 310 Genetic Analyzer	1	H27. 9

【衛生グループ】

機器名	型 式	数量	設置年月
TOC計	TELEDYNE TEKMAR Apollo9000HS	1	H16. 3
過酸化水素計	ゼネラル科学 オリテクターモデル5	1	H17. 8
凍結乾燥機	LABCONCO FreeZone6	1	H17. 8
ガスクロマトグラフ質量分析装置	アジレント・テクノロジー 5975	1	H18. 1
GPC装置	ジーエルサイエンス G-Prep GPC 8100	1	H21. 2
多検体自動濃縮装置	ビュッヒ Syncore Q-101	1	H22. 2
試料粉砕装置	ビュッヒ Mixer B-400	1	H22. 3
ガスクロマトグラフ (ECD FID FPD)	島津製作所 GC-2014	1	H22. 3
ガスクロマトグラフタンデム質量分析装置	アジレント・テクノロジー 7000B	1	H22. 3
高速液体クロマトグラフ	ウォーターズ Acquity UPLC H-Class	1	H22. 9
ゲルマニウム半導体核種分析装置	セイコーイージーアンドジー ORTEC GEM20-70	1	Н23. 9
全自動固相抽出装置	アイスティサイエンス ST-L300	1	H25. 1
液体クロマトグラフタンデム質量分析装置	アジレント・テクノロジー 6460	1	H26. 6

【大気環境グループ】

機器名	型式	数量	設置年月
ガスクロマトグラフ質量分析装置	アジレント・テクノロジー 5973	1	H16. 3
試料導入装置	エンテック 7100A	1	H16. 3
イオンクロマトグラフ	ダイオネクス ICS-2000	1	H20. 9
イオンクロマトグラフ	ダイオネクス ICS-2100	1	H24.10
ICP質量分析装置	パーキン・エルマー ELAN DRC-e	1	H22. 3
カーボンアナライザー	SUNSET LABORATORY	1	H24.11

【水質環境グループ】

「小兵水売ノルーン」			
機器名	型 式	数量	設置年月
微量全窒素分析装置	三菱化学 TN-100	1	H10. 9
高速液体クロマトグラフ	アジレント・テクノロジー 1100	1	H14.10
ゲルマニウム半導体核種分析装置	セイコーイージーアンドジー ORTEC GEM-20P4-X	1	H16. 1
全窒素・全りん自動分析装置	B L テック QuAAtro 2-HR	1	H20. 1
原子吸光分析装置	日立 Z-2010	1	H22. 2
低バックグラウンド放射能自動測定装置	アロカ LBC-4202B	1	H22. 3
ゲルマニウム半導体核種分析装置	セイコーイージーアンドジー ORTEC GEM25-70	1	H24. 3
紫外可視分光光度計	日本分光 V-630iRM	1	H26.10
ヘッドスペースサンプラー付ガスクロマト	アジレント・テクノロジー 5977A	1	H27.12
グラフ質量分析装置			

Ⅱ 事 業 概 要

1. 測定檢查等事業

1) 微生物グループ

(1) 感染症発生動向調査(患者情報)

感染症発生動向調査は、平成11年4月1日に施行された「感染症の予防及び感染症の患者に対する医療に関する法律」(以下、感染症法)の第三章「感染症に関する情報の収集と公表」の第12条から第16条に基づいて実施される事業であり、詳細については「感染症発生動向調査事業実施要綱」に定められている。これを受けて、和歌山県では「和歌山県感染症発生動向調査事業実施要綱」を策定している。対象となる感染症は、感染症法施行令及び施行規則の一部改正により114疾病(一~五類感染症、新型インフルエンザ等感染症、感染症法14条第1項に規定する厚生労働省令で定める疑似症)となった。当センターでは感染症の患者報告数集計とその解析を担当している。

			表	1 -	1.	疾症	対別	保健	所別	報告	·数	(20)	15年	:)								
	感染	症名 保健所	和哥		海	南	岩	出	橋	本	湯	浅	御	坊	田	辺	新	宮		宮 (支所)	県 計	
	二類	結核		33		9		15	1	6	1	3	1	4	1	.8		7		4	179	
Ī		細菌性赤痢						1								2					3	
	三類	腸管出血性大腸菌感染症		3		1		1		2				1							8	
ı		A型肝炎						1													1	
		重症熱性血小板減少症候群		1			1														1	
		つつが虫病	1		T			1								6					7	
	四類	デング熱		1																	1	
		日本紅斑熱					†									2	1	0		5	17	
		レジオネラ症	***************************************	5		1	***********			1				2					***************************************		9	
		レプトスピラ症	1		T											1					1	
Ī		アメーバ赤痢		2												1					3	
		ウイルス性肝炎					*****	1								1					2	
		カルバペネム耐性腸内細菌感染症		2												2					4	
		急性脳炎		1	†																1	
		クロイツフェルト・ヤコブ病		1			1														1	
		劇症型溶血性レンサ球菌感染症								1						2					3	
		後天性免疫不全症候群		4		1		1								1		1			8	
	五類	ジアルジア症			İ			1		1					İ						2	
		侵襲性インフルエンザ菌感染症														1					1	
		侵襲性髄膜炎菌感染症		1																	1	
		侵襲性肺炎球菌感染症		6				1						1		6		2			16	
		水痘(入院例)				1	1														1	
		梅毒		6		1		5				1				8					21	
		播種性クリプトコックス症						1								1				1	3	
		破傷風		1			1			1											2	
ľ		計	1	117		14		29	-	22		14		18		52	4	20		10	296	
		インフルエンザ	(4.5)																		(=0) 0.46	20
		(鳥インフルエンザ及び新型インフルエンザ等感染症を除く。)	(15)	3200	(3)	270	(6)	1170	(6)	1025	(5)	676	(3)	361	(7)	1949	(3)	547	(2)	241	(50) 943	39
			(9)	3200 418	(2)	270 35	(6)	1170 375	(6)	1025 38	(5)	676	(3)	361 111	(7)	1949 256	(3)	547 17	(2)	241	(31) 131	
		(鳥インフルエンザ及び新型インフルエンザ等感染症を除く。)																			` '	14
		(鳥インフルエンザ及び新型インフルエンザ等感染症を除く。) RSウイルス感染症	(9)	418	(2)	35	(4)	375	(4)	38	(3)	64	(2)	111	(4)	256	(2)	17	(1)	0	(31) 131	14
		(島ルフルエンザ及び新型インフルエンザ等感染症を除く。) RSウイルス感染症 咽頭結膜熱	(9) (9)	418 85	(2)	35 28	(4) (4)	375 142	(4) (4)	38 90	(3)	64 10	(2)	111 49	(4)	256 155	(2)	17 17	(1) (1)	0	(31) 131 (31) 57	14 76 28
		鳴ルフルエンザ及び新型ルフルエンザ等感染症を除く。) RSウイルス感染症 咽頭結膜熱 A群溶血性レンサ球菌咽頭炎	(9) (9) (9)	418 85 472	(2) (2) (2)	35 28 65	(4) (4) (4)	375 142 294	(4) (4) (4)	38 90 222	(3) (3) (3)	64 10 110	(2) (2) (2)	111 49 120	(4) (4) (4)	256 155 318	(2) (2) (2)	17 17 27	(1) (1) (1)	0 0 0	(31) 131 (31) 57 (31) 162	14 76 28 80
定		(あたフルムン学長が単位・フルエン学等感染底を除く。) RSウイルス感染症 ・ 理頭結膜熱 人群溶血性レンサ球菌咽頭炎 感染性胃腸炎	(9) (9) (9) (9)	418 85 472 2684	(2) (2) (2) (2)	35 28 65 559	(4) (4) (4) (4)	375 142 294 1147	(4) (4) (4) (4)	38 90 222 297	(3) (3) (3) (3)	64 10 110 305	(2) (2) (2) (2)	111 49 120 163	(4) (4) (4) (4)	256 155 318 234	(2) (2) (2) (2)	17 17 27 79	(1) (1) (1) (1)	0 0 0 12	(31) 131 (31) 57 (31) 162 (31) 548	14 76 28 80
定点		(あたフルエンザ及び無性ペフルエンザ等感染症を除く。) RSウイルス感染症 咽頭結膜熱 A群溶血性レンサ球菌咽頭炎 感染性胃腸炎 水痘	(9) (9) (9) (9) (9)	418 85 472 2684 163	(2) (2) (2) (2) (2) (2)	35 28 65 559 27	(4) (4) (4) (4) (4)	375 142 294 1147 36	(4) (4) (4) (4) (4)	38 90 222 297 56	(3) (3) (3) (3) (3)	64 10 110 305 102	(2) (2) (2) (2) (2) (2)	111 49 120 163 23	(4) (4) (4) (4) (4)	256 155 318 234 88	(2) (2) (2) (2) (2) (2)	17 17 27 79 12	(1) (1) (1) (1) (1)	0 0 0 12 0	(31) 131 (31) 57 (31) 162 (31) 548 (31) 50	14 76 28 80 07
定点把	T#7	(島化フルエン東及び専性化フルエンサ等感染底を除く。) RSウイルス感染症 咽頭結膜熱 A群溶血性レンサ球菌咽頭炎 感染性胃腸炎 水痘 手足口病	(9) (9) (9) (9) (9) (9)	418 85 472 2684 163 995	(2) (2) (2) (2) (2) (2) (2)	35 28 65 559 27 224	(4) (4) (4) (4) (4) (4)	375 142 294 1147 36 410	(4) (4) (4) (4) (4) (4)	38 90 222 297 56 433	(3) (3) (3) (3) (3) (3)	64 10 110 305 102 469	(2) (2) (2) (2) (2) (2) (2)	111 49 120 163 23 252	(4) (4) (4) (4) (4) (4) (4)	256 155 318 234 88 683	(2) (2) (2) (2) (2) (2) (2)	17 17 27 79 12 157	(1) (1) (1) (1) (1) (1)	0 0 0 12 0 9	(31) 131 (31) 57 (31) 162 (31) 548 (31) 50 (31) 363	14 76 28 80 07 32
点	五類	「あたフルエンサ及が整化フルエンサ等感象症を除く。) RSウイルス感染症 咽頭結膜熱 A群溶血性レンサ球菌咽頭炎 感染性胃腸炎 水痘 手足口病 伝染性紅斑	(9) (9) (9) (9) (9) (9) (9)	418 85 472 2684 163 995 139	(2) (2) (2) (2) (2) (2) (2) (2)	35 28 65 559 27 224 42	(4) (4) (4) (4) (4) (4) (4) (4)	375 142 294 1147 36 410 187	(4) (4) (4) (4) (4) (4) (4)	38 90 222 297 56 433 15	(3) (3) (3) (3) (3) (3) (3)	64 10 110 305 102 469 178	(2) (2) (2) (2) (2) (2) (2) (2)	111 49 120 163 23 252 49	(4) (4) (4) (4) (4) (4) (4)	256 155 318 234 88 683 85	(2) (2) (2) (2) (2) (2) (2) (2)	17 17 27 79 12 157 2	(1) (1) (1) (1) (1) (1) (1)	0 0 0 12 0 9	(31) 131 (31) 57 (31) 162 (31) 548 (31) 50 (31) 363 (31) 69	14 76 28 80 07 32 07
点把握・	五類	原化フルムン学長は準性化フルエン学等感染底を除く。) RSウイルス感染症 ・ 理頭結膜熱 A 群溶血性レンサ球菌咽頭炎 感染性胃腸炎 水痘 手足口病 伝染性紅斑 突発性発疹	(9) (9) (9) (9) (9) (9) (9) (9)	418 85 472 2684 163 995 139 230	(2) (2) (2) (2) (2) (2) (2) (2) (2)	35 28 65 559 27 224 42 51	(4) (4) (4) (4) (4) (4) (4) (4) (4)	375 142 294 1147 36 410 187 144	(4) (4) (4) (4) (4) (4) (4) (4)	38 90 222 297 56 433 15 43	(3) (3) (3) (3) (3) (3) (3) (3)	64 10 110 305 102 469 178 109	(2) (2) (2) (2) (2) (2) (2) (2) (2)	111 49 120 163 23 252 49 30	(4) (4) (4) (4) (4) (4) (4) (4)	256 155 318 234 88 683 85 61	(2) (2) (2) (2) (2) (2) (2) (2)	17 17 27 79 12 157 2	(1) (1) (1) (1) (1) (1) (1) (1)	0 0 0 12 0 9 0	(31) 131 (31) 57 (31) 162 (31) 548 (31) 50 (31) 363 (31) 69 (31) 68	14 76 28 80 07 32 07 32
点把握・週	五類	(ACZ)AGZ/考及(京暦化フルエン/等級条度を除く。) RSウイルス感染症 咽頭結膜熱 相群溶血性レンサ球菌咽頭炎 感染性胃腸炎 水痘 手足口病 伝染性紅斑 突発性発疹 百日咳	(9) (9) (9) (9) (9) (9) (9) (9)	418 85 472 2684 163 995 139 230	(2) (2) (2) (2) (2) (2) (2) (2) (2)	35 28 65 559 27 224 42 51	(4) (4) (4) (4) (4) (4) (4) (4) (4)	375 142 294 1147 36 410 187 144	(4) (4) (4) (4) (4) (4) (4) (4) (4)	38 90 222 297 56 433 15 43	(3) (3) (3) (3) (3) (3) (3) (3) (3)	64 10 110 305 102 469 178 109	(2) (2) (2) (2) (2) (2) (2) (2) (2)	111 49 120 163 23 252 49 30	(4) (4) (4) (4) (4) (4) (4) (4) (4)	256 155 318 234 88 683 85 61	(2) (2) (2) (2) (2) (2) (2) (2) (2)	17 17 27 79 12 157 2 14 2	(1) (1) (1) (1) (1) (1) (1) (1)	0 0 0 12 0 9 0	(31) 131 (31) 57 (31) 162 (31) 548 (31) 50 (31) 363 (31) 69 (31) 68 (31) 9	14 76 28 80 07 32 07 32 0 10
点把握・	五類	原化フルエン学及び専性ペフルエン学等感染症を除く。) RSウイルス感染症 咽頭結膜熱 A群容血性レンサ球菌咽頭炎 感染性胃腸炎 水痘 手足口病 伝染性紅斑 突発性発疹 百日咳 ヘルパンギーナ	(9) (9) (9) (9) (9) (9) (9) (9) (9)	418 85 472 2684 163 995 139 230 5 539	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	35 28 65 559 27 224 42 51 1 55	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	375 142 294 1147 36 410 187 144 0	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	38 90 222 297 56 433 15 43 0	(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	64 10 110 305 102 469 178 109 0	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	111 49 120 163 23 252 49 30 0 48	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	256 155 318 234 88 683 85 61 1	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	17 17 27 79 12 157 2 14 2 47	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0 0 0 12 0 9 0 0	(31) 131 (31) 57 (31) 162 (31) 548 (31) 50 (31) 363 (31) 69 (31) 68 (31) 9 (31) 141	14 76 28 80 07 32 07 32 0 10
点把握・週	五類	原化フルエン専及が整性ペフルエン等等感象配を終く。) RSウイルス感染症 ・ 理頭結膜熱 ・ A群溶血性レンサ球菌咽頭炎 ・ 感染性胃腸炎 ・ 水痘 ・ 手足口病 ・ 伝染性紅斑 ・ 突発性発疹 ・ 百日咳 ・ ヘルパンギーナ 流行性耳下腺炎	(9) (9) (9) (9) (9) (9) (9) (9) (9) (9)	418 85 472 2684 163 995 139 230 5 539 47	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	35 28 65 559 27 224 42 51 1 55	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	375 142 294 1147 36 410 187 144 0	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	38 90 222 297 56 433 15 43 0	(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	64 10 110 305 102 469 178 109 0	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	111 49 120 163 23 252 49 30 0 48	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	256 155 318 234 88 683 85 61 1 159	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	17 17 27 79 12 157 2 14 2 47	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0 0 0 12 0 9 0 0	(31) 131 (31) 57 (31) 162 (31) 548 (31) 50 (31) 363 (31) 69 (31) 68 (31) 9 (31) 141 (31) 16	14 76 28 80 07 32 07 32 0 10 61 8
点把握・週	五類	原化フルムン学長び専門化フルエン学等感染底を除く。) RSウイルス感染症 盟頭結膜熱 A群溶血性レンサ球菌咽頭炎 感染性胃腸炎 水痘 医染性紅斑 突発性発疹 百日咳 ヘルパンギーナ 流行性耳下腺炎 急性出血性結膜炎	(9) (9) (9) (9) (9) (9) (9) (9) (9) (9)	418 85 472 2684 163 995 139 230 5 539 47	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	35 28 65 559 27 224 42 51 1 55	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	375 142 294 1147 36 410 187 144 0	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	38 90 222 297 56 433 15 43 0	(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	64 10 110 305 102 469 178 109 0	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	111 49 120 163 23 252 49 30 0 48	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	256 155 318 234 88 683 85 61 1 159 14	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	17 17 27 79 12 157 2 14 2 47	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0 0 0 12 0 9 0 0	(31) 131 (31) 57 (31) 162 (31) 548 (31) 50 (31) 363 (31) 69 (31) 68 (31) 9 (31) 141 (31) 16 (4) 3	14 76 28 80 07 32 07 32 0 10 61 3
点把握・週	五類	原化フルムン学長び専門セフルエン学等感染底を除く。) RSウイルス感染症 ・ 理頭結膜熱 A群溶血性レンサ球菌咽頭炎 感染性胃腸炎 水痘 ・ 手足口病 伝染性紅斑 突発性発疹 直日咳 ・ ヘルパンギーナ 流行性耳下腺炎 急性出血性結膜炎 流行性角結膜炎	(9) (9) (9) (9) (9) (9) (9) (9) (9) (9)	418 85 472 2684 163 995 139 230 5 539 47 0 54	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	35 28 65 559 27 224 42 51 1 55	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	375 142 294 1147 36 410 187 144 0 289 50	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	38 90 222 297 56 433 15 43 0 61 22	(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	64 10 110 305 102 469 178 109 0 211	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	111 49 120 163 23 252 49 30 0 48 13	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	256 155 318 234 88 683 85 61 1 159 14 3	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	17 17 27 79 12 157 2 14 2 47	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0 0 0 12 0 9 0 0	(31) 131 (31) 57 (31) 162 (31) 548 (31) 50 (31) 363 (31) 69 (31) 68 (31) 9 (31) 141 (31) 16 (4) 3 (4) 7	114 76 28 80 77 32 7 32 7 110 61 3
点把握・週	五類	原化フルロン学及び専性化フルエン学等感染底を除く。) RSウイルス感染症 咽頭結膜熱 小痘 手足口病 伝染性紅斑 突発性発疹 百日咳 ヘルパンギーナ 流行性耳下腺炎 急性性血性結膜炎 流行性角粘膜炎 細菌性髄膜炎	(9) (9) (9) (9) (9) (9) (9) (9) (9) (9)	418 85 472 2684 163 995 139 230 5 539 47 0 54	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	35 28 65 559 27 224 42 51 1 55	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	375 142 294 1147 36 410 187 144 0 289 50	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	38 90 222 297 56 433 15 43 0 61 22	(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	64 10 110 305 102 469 178 109 0 211 12	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	111 49 120 163 23 252 49 30 0 48 13	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	256 155 318 234 88 683 85 61 1 159 14 3 17 2	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	17 17 27 79 12 157 2 14 2 47 1	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0 0 0 12 0 9 0 0	(31) 131 (31) 57 (31) 165 (31) 165 (31) 548 (31) 50 (31) 363 (31) 68 (31) 68 (31) 9 (31) 141 (31) 16 (4) 71 (11) 7	114 76 28 80 77 32 77 32 97 110 51 8 1
点把握・週	五類	原化フルムン学長び専門セフルエン学等感染症を除く。) RSウイルス感染症 理頭結膜熱 A群溶血性レンサ球菌咽頭炎 感染性胃腸炎 水痘 正染性紅斑 突発性免疹 百日咳 ヘルパンギーナ 流行性耳下腺炎 急性出血性結膜炎 流行性角結膜炎 細菌性髄膜炎 無菌性髄膜炎 ケースプラズマ肺炎 クラミジア肺炎(オウム病を除く。)	(9) (9) (9) (9) (9) (9) (9) (9) (9) (9)	418 85 472 2684 163 995 139 230 5 539 47 0 54 1	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	35 28 65 559 27 224 42 51 1 55	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	375 142 294 1147 36 410 187 144 0 289 50	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	38 90 222 297 56 433 15 43 0 61 22 2 5	(3) (3) (3) (3) (3) (3) (3) (3) (3) (4) (1) (1) (1) (1)	64 10 110 305 102 469 178 109 0 211 12	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	111 49 120 163 23 252 49 30 0 48 13	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	256 155 318 234 88 683 85 61 1 159 14 3 17 2	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	17 17 27 79 12 157 2 14 2 47 1	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0 0 0 12 0 9 0 0	(31) 131 (31) 57 (31) 162 (31) 548 (31) 50 (31) 363 (31) 69 (31) 69 (31) 69 (31) 141 (31) 16 (4) 3 (4) 71 (11) 7	14 66 228 880 07 332 07 332 07 10 61 81 7
点把握・週	五類	原化フルルン学及び開催化フルエン学等感染底を除く。) RSウイルス感染症 ・ 理頭結膜熱 ・ A 群溶血性レンサ球菌咽頭炎 ・ 感染性胃腸炎 ・ 木痘 ・ 手足口病 ・ 伝染性紅斑 ・ 突発性発疹 ・ 百日咳 ・ ルパンギーナ ・ 流行性耳下腺炎 ・ 急性出血性結膜炎 ・ 流行性角結膜炎 ・ 細菌性髄膜炎 ・ マイコブラズマ肺炎	(9) (9) (9) (9) (9) (9) (9) (9) (9) (3) (3) (3) (3)	418 85 472 2684 163 995 139 230 5 539 47 0 54 1 0 28	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	35 28 65 559 27 224 42 51 1 55 2	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	375 142 294 1147 36 410 187 144 0 289 50	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	38 90 222 297 56 433 15 43 0 61 22 2 5 16 1	(3) (3) (3) (3) (3) (3) (3) (3) (3) (1) (1)	64 10 110 305 102 469 178 109 0 211 12 0 0 4	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	111 49 120 163 23 252 49 30 0 48 13	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	256 155 318 234 88 683 85 61 1 159 14 3 17 2	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	17 17 27 79 12 157 2 14 2 47 1	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0 0 0 12 0 9 0 0 0	(31) 131 (31) 57 (31) 162 (31) 548 (31) 50 (31) 363 (31) 69 (31) 141 (31) 16 (4) 3 (4) 71 (11) 7 (11) 7 (11) 11	14 76 228 80 77 32 97 332 97 110 61 3 1
点把握・週	五類	原化フルルン学及が整性フルルン学等感染症を除く。) RSウイルス感染症 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	(9) (9) (9) (9) (9) (9) (9) (9) (9) (9)	418 85 472 2684 163 995 139 230 5 539 47 0 54 1 0 28 0 15 9075	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	35 28 65 559 27 224 42 51 1 55	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	375 142 294 1147 36 410 187 144 0 289 50 1 2 18 0 31 4296	(4) (4) (4) (4) (4) (4) (4) (4) (4) (2) (2) (2) (2)	38 90 222 297 56 433 15 43 0 61 22 5 16 1 1 2327	(3) (3) (3) (3) (3) (3) (3) (3) (3) (1) (1) (1) (1) (1) (1)	64 10 110 305 102 469 178 109 0 211 12 0 0 4 0 0 2250	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	111 49 120 163 23 252 49 30 0 48 13	(4) (4) (4) (4) (4) (4) (4) (4) (4) (1) (1) (2) (2) (2) (2)	256 155 318 234 88 683 85 61 1 159 14 3 17 2 0 9 1 6 4041	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	17 17 27 79 12 157 2 14 2 47 1	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0 0 0 12 0 9 0 0	(31) 131 (31) 57 (31) 162 (31) 54 (31) 50 (31) 36 (31) 69 (31) 68 (31) 164 (4) 3 (4) 71 (11) 7 (11) 7 (11) 11 (11) 2 84 (258	14 76 28 80 07 332 07 332 07 332 07 332 07 332 07 332 07 34 35 10 26 46 46 47 48 48 49 49 49 49 49 49 49 49 49 49
点把握・週報	五類	(あたフルルン学及が歴史・フルルン・学等感染症を除く。) RSウイルス感染症 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	(9) (9) (9) (9) (9) (9) (9) (9) (9) (9)	418 85 472 2684 163 995 139 230 5 539 47 0 54 1 0 28 0 15 9075	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	35 28 65 559 27 224 42 51 1 55 2	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	375 142 294 1147 36 410 187 144 0 289 50 1 2 18 0 0 31 4296	(4) (4) (4) (4) (4) (4) (4) (4) (4) (2) (2) (2) (2) (2) (2)	38 90 222 297 56 433 15 43 0 61 22 2 5 16 1 1 2327	(3) (3) (3) (3) (3) (3) (3) (3) (3) (1) (1) (1) (1) (1) (1)	64 10 110 305 102 469 178 109 0 211 12 0 0 0 4 0 0 2250	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	111 49 120 163 23 252 49 30 0 48 13	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	256 155 318 234 88 683 85 61 1 159 14 3 17 2 0 9 1 6 4041 31	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	17 17 27 79 12 157 2 14 2 47 1	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0 0 0 12 0 9 0 0 0	(31) 131 (31) 57 (31) 162 (31) 544 (31) 50 (31) 68 (31) 68 (31) 61 (31) 141 (31) 141 (31) 17 (11) 7 (11) 7 (11) 7 (11) 11 (11) 2 258 (8) 19	114 76 228 80 07 332 07 51 10 61 8 1 7 7 10 2 4 819 99
点把握・週報定	五類	原化フルムン学及専門セフルエン学等感染症を除く。) RSウイルス感染症 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	(9) (9) (9) (9) (9) (9) (9) (9) (9) (9)	418 85 472 2684 163 995 139 230 5 539 47 0 54 1 0 28 0 15 9975 89	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	35 28 65 559 27 224 42 51 1 55 2	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	375 142 294 11147 36 410 187 144 0 289 50 1 2 18 0 31 4296 72 9	(4) (4) (4) (4) (4) (4) (4) (4) (4) (2) (2) (2) (2) (2) (2) (1) (1)	38 90 222 297 56 433 15 43 0 61 22 2 5 16 1 1 1 2327 7	(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	64 10 110 305 102 469 178 109 0 211 12 0 0 4 0 0 2250 0	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	111 49 120 163 23 252 49 30 0 48 13	(4) (4) (4) (4) (4) (4) (4) (4) (4) (1) (1) (2) (2) (2) (2) (2) (2) (1) (1)	256 155 318 234 88 683 85 61 1 159 14 3 17 2 0 9 1 6 4041 31	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	17 17 27 79 12 157 2 14 2 47 1	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0 0 0 12 0 9 0 0 0	(31) 131 (31) 57 (31) 162 (31) 544 (31) 50 (31) 68 (31) 68 (31) 9 (31) 141 (31) 141 (31) 17 (31) 18 (31) 18 (3	114 76 228 80 07 32 10 31 10 61 11 77 77 10 10 10 10 10 10 10 10 10 10
点把握・週報 定点		原化フルエン東に専門セフルエン中等感染症を除く。) RSウイルス感染症 ・ 理頭結膜熱 人群溶血性レンサ球菌咽頭炎 感染性胃腸炎 水痘 ・ 手足口病 ・ 伝染性紅斑 突発性発疹 直日咳 ・ ヘルパンギーナ ・ 流行性耳下腺炎 急性出血性結膜炎 ・ 流行性角結膜炎 ・ 細菌性髄膜炎 ・ 無菌性髄膜炎 ・ 悪菌性髄膜炎 ・ 大力・ジア・耐炎 クラジア・肺炎 (ロタウイルス) ・ 計 性器クラジシア・酸染症 性器ペースウイルス 感染症 性器ペースマイルス の	(9) (9) (9) (9) (9) (9) (9) (9) (9) (9)	418 85 472 2684 163 995 139 230 5 539 47 0 28 0 15 9075 9075 89 74 71	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	35 28 65 559 27 224 42 51 1 55 2	(4) (4) (4) (4) (4) (4) (4) (4) (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	375 142 294 11147 36 410 0 289 50 1 2 18 0 31 4296 9 5	(4) (4) (4) (4) (4) (4) (4) (4) (4) (2) (2) (2) (2) (2) (2) (1) (1) (1)	38 90 222 297 56 433 15 43 0 61 22 5 16 1 1 1 2327 7 10 2	(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	64 10 110 305 102 469 178 109 0 211 12 0 0 4 4 0 0 0 2250 0 0	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	111 49 120 163 23 252 49 30 0 48 13	(4) (4) (4) (4) (4) (4) (4) (4) (4) (1) (1) (2) (2) (2) (2) (2) (2) (1) (1) (1)	256 155 318 234 88 683 85 61 1 159 14 3 17 2 0 9 1 6 4041 31 3	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	17 17 27 79 12 157 2 14 2 47 1	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0 0 0 12 0 9 0 0 0	(31) 131 (31) 162 (31) 548 (31) 560 (31) 560 (31) 365 (31) 69 (31) 144 (31) 16 (4) 3 (4) 71 (11) 7 (11) 7 (11) 11 (11) 2 84 258 (8) 19 (8) 98 (8) 78	114 76 228 80 07 32 07 32 07 32 0 110 63 1 1 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9
点把握・週報 定点把		原化フルルン学及が整性フルルン学等感染症を終く。) RSウイルス感染症 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	(9) (9) (9) (9) (9) (9) (9) (9) (9) (3) (3) (3) (3) (3) (3) (4) (4) (4) (4) (4)	418 85 472 2684 163 995 539 47 0 54 1 0 28 0 15 907 907 907 907 907 907 907 907	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	35 28 65 559 27 224 42 51 1 55 2	(4) (4) (4) (4) (4) (4) (4) (4) (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	375 142 294 11147 36 410 187 144 0 289 50 1 1 2 18 0 31 4296 72 9 5	(4) (4) (4) (4) (4) (4) (4) (4) (4) (2) (2) (2) (2) (2) (2) (1) (1) (1)	38 90 222 297 56 433 15 0 61 22 5 16 1 1 2327 7 10 2	(3) (3) (3) (3) (3) (3) (3) (3) (3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	10 110 305 102 469 178 0 211 12 0 0 0 4 0 0 2250 0 0	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	111 49 120 163 23 252 49 0 0 48 13 0 0 0 29 0 29	(4) (4) (4) (4) (4) (4) (4) (4) (4) (1) (1) (2) (2) (2) (2) (2) (1) (1) (1) (1)	256 155 318 234 88 683 85 61 1 159 14 3 17 2 0 9 1 6 4041 31 3 0	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	17 17 27 79 12 157 2 14 2 47 1 0 6 0 0 2 931	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0 0 0 12 0 9 0 0 0	(31) 131 (31) 57 (31) 162 (31) 54 (31) 50 (31) 36 (31) 69 (31) 68 (31) 164 (4) 3 (4) 7; (11) 7 (11) 7 (11) 11 (11) 2 (8) 8 (8) 19 (8) 96 (8) 96 (8) 92 (8) 92 (8) 92 (8) 92 (8) 92 (8) 92 (8) 92	114 76 228 80 907 32 907 332 907 332 907 100 100 100 100 100 100 100 1
点把握・週報 定点		原化フルルン学及が歴化フルエン学等感染症を除く。) RSウイルス感染症 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	(9) (9) (9) (9) (9) (9) (9) (9) (9) (9)	418 85 472 2684 163 995 5 539 47 0 54 1 0 28 0 15 9975 89 74 71 66 150	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	35 28 65 559 27 224 42 51 1 55 2	(4) (4) (4) (4) (4) (4) (4) (4) (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	375 142 294 11147 36 410 0 289 50 1 1 2 18 0 31 4296 72 9 5 6	(4) (4) (4) (4) (4) (4) (4) (4) (4) (2) (2) (2) (2) (2) (2) (1) (1) (1) (1) (2)	38 90 222 297 56 433 15 0 61 22 2 5 16 1 1 2327 7 10 2 7	(3) (3) (3) (3) (3) (3) (3) (3) (3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	64 10 110 305 102 469 178 109 0 2211 12 0 0 0 2250 0 0 0	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	111 49 120 163 23 252 49 0 0 48 13 0 0 0 29 0 29 1277	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	256 155 318 234 88 683 61 1 159 14 3 17 2 0 9 9 1 6 4041 31 3 0 13 25	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	17 17 27 79 12 157 2 14 47 1 0 6 0 2 931	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0 0 0 12 0 9 0 0 0	(31) 131 (31) 57 (31) 162 (31) 548 (31) 59 (31) 69 (31) 68 (31) 164 (4) 3 (4) 7; (11) 7 (11) 7 (11) 11 (11) 2 2588 (8) 19 (8) 9 (8) 9 (8) 78 (8) 9 (11) 25	114 76 228 80 97 32 97 33 97 10 61 81 17 77 10 10 10 10 10 10 10 10 10 10
点把握・週報 定点把握・月		原化フルムン学及時間ペフルムン学等感染症を除く。) RSウイルス感染症 ・ 理頭結膜熱	(9) (9) (9) (9) (9) (9) (9) (9) (9) (9)	418 85 472 2684 163 995 139 230 5 539 47 0 28 0 15 0 15 89 74 71 66 61 150 4	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	35 28 65 559 27 224 42 51 1 55 2	(4) (4) (4) (4) (4) (4) (4) (4) (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	375 142 294 1147 36 410 0 289 50 1 1 2 188 0 31 4296 72 9 5	(4) (4) (4) (4) (4) (4) (4) (4) (4) (2) (2) (2) (2) (2) (1) (1) (1) (1) (2) (2)	222 297 56 433 0 61 222 5 16 1 1 2327 7 10 2 2 7	(3) (3) (3) (3) (3) (3) (3) (3) (3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	0 0 110 102 469 0 211 12 0 0 0 2250 0 0 0 0 0	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	111 49 120 163 23 252 49 30 0 48 13 0 0 29 0 29 1277	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	256 155 318 234 88 683 85 61 1 159 14 2 0 9 1 6 4041 31 3 0 13 25 1	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	17 17 27 79 12 157 2 14 2 47 1 0 6 6 0 2 931	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0 0 0 12 0 9 0 0 0	(31) 131 (31) 57 (31) 162 (31) 544 (31) 50 (31) 68 (31) 68 (31) 9 (31) 141 (31) 141 (31) 17 (11) 7 (11) 7 (11) 11 (11) 2 84 (258 (8) 19 (8) 96 (8) 78 (8) 92 (11) 25 (11) 5 (11) 5	14 76 28 80 77 77 77 10 81 11 77 77 10 10 10 10 10 10 10 10 10 10
点把握・週報 定点把握・		原化フルルン学及が歴化フルエン学等感染症を除く。) RSウイルス感染症 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	(9) (9) (9) (9) (9) (9) (9) (9) (9) (9)	418 85 472 2684 163 995 5 539 47 0 54 1 0 28 0 15 9975 89 74 71 66 150	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	35 28 65 559 27 224 42 51 1 55 2	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	375 142 294 11147 36 410 0 289 50 1 1 2 18 0 31 4296 72 9 5 6	(4) (4) (4) (4) (4) (4) (4) (4) (4) (2) (2) (2) (2) (2) (2) (1) (1) (1) (1) (2)	38 90 222 297 56 433 15 0 61 22 2 5 16 1 1 2327 7 10 2 7	(3) (3) (3) (3) (3) (3) (3) (3) (3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	64 10 110 305 102 469 178 109 0 2211 12 0 0 0 2250 0 0 0	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	111 49 120 163 23 252 49 0 0 48 13 0 0 0 29 0 29 1277	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	256 155 318 234 88 683 61 1 159 14 3 17 2 0 9 9 1 6 4041 31 3 0 13 25	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	17 17 27 79 12 157 2 14 47 1 0 6 0 2 931	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0 0 0 12 0 9 0 0 0	(31) 131 (31) 152 (31) 54 (31) 54 (31) 56 (31) 36 (31) 68 (31) 69 (31) 14 (31) 16 (4) 3 (4) 71 (11) 7 (11) 7 (11) 11 (11) 2 258 (8) 19 (8) 99 (8) 78 (8) 99 (11) 25 (11) 5 (11) 6	14 76 28 80 77 77 77 10 81 11 77 77 10 10 10 10 10 10 10 10 10 10

平成27年(1月~12月)の感染症発生動向調査による感染症別保健所別報告数は表1-1のとお りであった、平成27年においては、二類感染症1疾病、三類感染症2疾病、四類感染症7疾病、五 類感染症(全数把握対象)15疾病,五類感染症(定点把握対象)26疾病,計51疾病について報告が あった. 二類から五類(全数把握対象)感染症の患者報告数については,二類感染症179名(結核 のみ), 三類感染症11名 (細菌性赤痢3名, 腸管出血性大腸菌感染症8名), 四類感染症37名 (A 型肝炎1名, 重症熱性血小板減少症候群1名, つつが虫病7名, デング熱1名, 日本紅斑熱17名, レジオネラ症 9 名,レプトスピラ症 1 名),五類感染症(全数把握対象)69名(アメーバ赤痢 3 名, ウイルス性肝炎2名,カルバペネム耐性腸内細菌感染症4名,急性脳炎1名,クロイツフェルト・ ヤコブ病1名,劇症型溶血性レンサ球菌感染症3名,後天性免疫不全症候群8名,ジアルジア症2 名,侵襲性インフルエンザ菌感染症1名,侵襲性髄膜炎菌感染症1名,侵襲性肺炎球菌感染症16名, 水痘(入院例)1名,梅毒21名,播種性クリプトコックス症3名,破傷風2名であった.二類から 五類(全数把握対象)感染症の報告数合計は平成26年は363名であったが、平成27年は296名に減少 した. 特に結核が平成26年の215名から平成27年は179名と減少し、また麻疹は平成26年は26名だっ たが平成27年には報告が無かった. 五類感染症(定点把握・週報)については, 計25,819名の患者 報告があり、平成26年(23,774名)より増加した、五類感染症(定点把握・月報)については、計 730名の患者報告があり、平成26年(752名)から減少した.STD定点把握では性器クラミジア感染 症が, 基幹定点把握ではメチシリン耐性黄色ブドウ球菌感染症が最も患者報告数が多かった.

(2) 行政検査

平成27年度に実施した行政検査の内容及び検査数は表1-2のとおりであった.

表1-2. 行政検査の内容及び検査数

依 頼 者	内 容	検体数	延検査数
	感染症流行予測調査事業 ポリオ感染源調査(環境水からのウイルス分離) 感染症発生動向調査事業	12	48
	病原体の検出	245	324
健康推進課	腸管出血性大腸菌の検査	2	2
	細菌性赤痢菌の検査	1	1
	レジオネラ菌の検査	16	16
	つつが虫病及び日本紅斑熱診断検査	28	45
	デング熱媒介蚊発生状況調査	201	201
	食中毒(疑いを含む)発生に伴う病原体の検査	48	64
	畜水産物中の残留抗生物質の検査	120	120
	流通食品の腸管出血性大腸菌O26・O111・O157の検査	30	90
	流通食品の腸炎ビブリオの検査	20	20
	流通食品のサルモネラ属菌の検査	40	40
	流通食品のカンピロバクターの検査	20	20
	生食用かきの成分規格試験および汚染実態調査	10	40
食品·生活衛生課	生めん類の汚染実態調査	10	30
	アイスクリーム類の汚染実態調査	30	60
	浅漬の汚染実態調査	10	20
	ナチュラルチーズのリステリア菌検査	10	10
	弁当の汚染実態調査	93	279
	食鳥処理場の汚染実態調査	92	92
	井戸水の検査	20	40
	マダニ類の紅斑熱群リケッチア保有実態調査	119	238
	計	1177	1800

a) 感染症流行予測調查事業

感染症流行予測調査では、「ポリオ感染源調査」として環境水からのポリオウイルスの検出を行った。伊都浄化センターへの流入下水を平成27年4月から平成28年3月の間毎月1回採取し、ウイルスの検出を行ったが、ポリオウイルスは検出されなかった。ポリオ感染源調査結果については表1-3のとおりであった。

H27年 H28年 11月 5月 6月 7月 8月 9月 10月 2月 3月 12月 4月 1月 0 Adenovirus 1 Ο 0 0 0 0 0 0 0 Adenovirus 2 0 0 Adenovirus 3 0 0 0 Adenovirus 5 0 0 Adenovirus 11 0 0 0 0 Adenovirus 31 0 0 0 Coxachievirus B4 О Coxachievirus B5 0 0 0 0 Echovirus 6 Echovirus 11 О Echovirus 18 O Echovirus 25 0 0 \circ

表1-3. ポリオ感染源調査ウイルス分離結果(環境水からの分離)

0

H27年

b) 感染症発生動向調查事業

Reovirus

合 計

検 体 数

検出病原体数

(a) 病原ウイルスの検出(表1-4)

臨床材料248検体からウイルス検出を行い、8種類193株のウイルスを検出した.

0

17

10

4月 5月 6月 7月 8月 9月 10月 11月 12月 1月 2月 3月 合 計 麻疹・風疹 3 3 0 Measles virus Rubella virus 0 インフルェンザ 10 2 2 13 79 23 185 Influenza virus A(H1)pdm 74 Influenza virus A(H3) 14 19 Influenza virus B(Yamagata) 10 15 4 3 40 Influenza virus B(Victoria) 2 30 8 11 重症熱性血小板減少症候群 2 3 1 SFTS virus 感染性胃腸炎 14 7 7 3 31 Noro virus G I 10 15 Noro virus G II 7 0 Sapo virus 3 Rota virus Group A 2 6 Coxsackie virus group A 5 無菌性髄膜炎 1 3 13 0 その他 7

表1-4. 感染症発生動向調査病原体検出状況 (H27年度受付分)

H28年

24

13

18

79

71

44

0

248

193

4

注)〇印は分離されたウイルス

(b)病原細菌の検出

19検体について検査を行った. 腸管出血性大腸菌 O157:H-(VT1, VT2)1例を確認した.

(c)つつが虫病, および日本紅斑熱診断検査

28症例について検査を行った. 日本紅斑熱については17例でPCR法によるR. japonica遺伝子の増幅を確認した. つつが虫病ではPCR法により 2 例で0. tsutsugamushi遺伝子を検出した (表 1-5).

表1-5. つつが虫病および日本紅斑熱陽性例

No	疾病名	保健所	年齢	性別	発病日	診断方法
1	日本紅斑熱	新宮保健所串本支所	60	男	H27.5.13	遺伝子検出
2	日本紅斑熱	新宮保健所串本支所	75	女	H27.5.26	遺伝子検出
3	日本紅斑熱	新宮保健所	84	男	H27.6.11	遺伝子検出
4	日本紅斑熱	田辺保健所	74	女	H27.6.14	遺伝子検出
5	日本紅斑熱	田辺保健所	68	女	H27.6.25	遺伝子検出
6	日本紅斑熱	新宮保健所串本支所	80	女	H27.6.25	遺伝子検出
7	日本紅斑熱	新宮保健所	78	男	H27.7.2	遺伝子検出
8	日本紅斑熱	新宮保健所	84	女	H27.7.4	遺伝子検出
9	日本紅斑熱	新宮保健所	61	男	H27.7.11	遺伝子検出
10	日本紅斑熱	新宮保健所串本支所	77	女	H27.8.11	遺伝子検出
11	日本紅斑熱	新宮保健所	67	男	H27.9.5	遺伝子検出
12	日本紅斑熱	新宮保健所	73	男	H27.9.22	遺伝子検出
13	日本紅斑熱	新宮保健所	67	男	H27.9.24	遺伝子検出
14	日本紅斑熱	新宮保健所串本支所	68	女	H27.9.26	遺伝子検出
15	日本紅斑熱	新宮保健所	71	女	H27.9.29	遺伝子検出
16	日本紅斑熱	新宮保健所	80	女	H27.10.1	遺伝子検出
17	日本紅斑熱	新宮保健所	72	女	H27.10.13	遺伝子検出
18	つつが虫病	岩出保健所	31	男	H27.11.4	遺伝子検出
19	つつが虫病	田辺保健所	83	女	H27.11.15	遺伝子検出

(d)デング熱媒介蚊発生状況調査

県内で採取された蚊201匹の内、ヒトスジシマカ188匹(11プール検体)についてPCR法によるデングウイルス遺伝子の検出を試みたが、いずれも検出されなかった.

c) 食中毒(疑いを含む)発生に伴う病原体の検査(表1-6)

C.jejuni を2例, B.cereus(嘔吐毒素非産生)を1例, S.aureus(エンテロトキシンA産生)を3例検出した. ノロウイルスについてはGI が 3 例, GII が11例から検出された.

表1-6. 食中毒(疑い)発生事例

番号	保健所	依頼日	原因施設	検体種別	検体数	原因病原体	備考
1	湯浅、田辺	H27.4.27	飲食店	便(喫食者)	3	Norovirus G I (2/3)	他府県発生事例
0	ш,п	H27.6.1	飲食店	嘔吐物(喫食者)	2	Norovirus G I (1/2)	
2	田辺	H21.0.1	队及店	便(調理従事者)	10	陰性	
3	海南	H27.6.15	飲食店	便(喫食者)	1	Norovirus G II (1/1)	他府県発生事例
		H27.7.26	飲食店	便(喫食者)	2	陰性	
4	御坊			食品	1	B.cereus (嘔吐毒素非産生)(1/1)、 S.aureus (エンテロトキシンA産生)(1/1)	
5	御坊	H27.7.27	飲食店	菌株(喫食者由来)	2	S.aureus (エンテロトキシンA産生) (2/2)	
6	橋本	H27.7.28	飲食店	食品	1	陰性	
7	湯浅	H27.9.1	飲食店	便(喫食者)	4	陰性	
	勿伐			便(調理従事者)	3	陰性	
8	岩出	H28.1.14	飲食店	便(喫食者)	3	Norovirus G II (3/3)	他府県発生事例
9	海南	H28.2.1	飲食店	便(喫食者)	2	C.jejuni (2/2)	
10	岩出	H28.2.24	飲食店	便(喫食者)	6	Norovirus G II /4 (4/6)	
	石山	1120.2.24	以及归	便(調理従事者)	6	Norovirus G II /4 (3/6)	
11	御坊	H28.2.26	飲食店	便(調理従事者)	2	陰性	

d) 畜水産物中の残留抗生物質の検査

食肉,鶏卵,養殖魚介類および蜂蜜,計120検体の検査を行った結果,すべてにおいて抗生物質 (テトラサイクリン系,マクロライド系,アミノグリコシド系)は検出されなかった.

e) 流通食品の腸管出血性大腸菌O26, O111およびO157の検査

牛レバー,牛ミンチ,生食用野菜,計30検体の検査を行った結果,すべてにおいて腸管出血性大腸菌O26,O111およびO157は検出されなかった.

f) 流通食品の腸炎ビブリオの検査

生食用鮮魚介類および生食用しらす,計20検体の検査を行った結果,すべて成分規格に適合した.

g) 流通食品のサルモネラ属菌の検査

食肉,鶏卵および生洋菓子,計40検体の検査を行った結果,すべてにおいてサルモネラ属菌は検出されなかった.

h) 流通食品のカンピロバクターの検査

鶏肉20検体の検査を行った結果、4 検体から Campylobacter je juni, 2 検体から Campylobacter coli, 1 検体から Campylobacter je juniと Campylobacter coliが検出された.

i) 生食用かきの成分規格試験および汚染実態調査

10検体について成分規格検査(細菌数,大腸菌,腸炎ビブリオ),およびノロウイルスの検査を行った結果,1検体からノロウイルスが検出された.

i) 生めん類の汚染実態調査

10検体について生菌数、大腸菌(ゆでめんの場合は大腸菌群)、黄色ブドウ球菌の検査を行った結果、1検体が生菌数の項目で衛生規範の基準に適合しなかった.

k) アイスクリーム類の汚染実態調査

30検体について生菌数,大腸菌群の検査を行った結果,3検体が生菌数の項目で,他の1検体が大腸菌群の項目で成分規格の基準に適合しなかった.

1) 浅漬の汚染実態調査

10検体について大腸菌,腸炎ビブリオの検査を行った結果,すべて衛生規範の基準に適合した.

m) 弁当の汚染実態調査

93検体について一般細菌数,大腸菌,黄色ブドウ球菌の検査を行った結果,10検体が一般細菌数の項目で,3 検体が大腸菌の項目で衛生規範の基準に適合しなかった.

n) 食鳥処理場の汚染実態調査

10カ所の食鳥処理場の食鳥および環境の拭き取り物92検体についてカンピロバクターの検査を行った結果,17検体からCampylobacter je juniが検出された.

o) 井戸水の検査

20検体について一般細菌、大腸菌の検査を行った結果、1検体が一般細菌の項目で、3検体が大腸菌の項目で、2検体が一般細菌および大腸菌の項目で水質基準に適合しなかった.

p) マダニ類の紅斑熱群リケッチア保有実態調査(表1-7)

県内で採取されたマダニ類、9種計119個体についてリケッチア遺伝子の保有状況を調べた.6個体で紅斑熱群リケッチア遺伝子が確認されたが、日本紅斑熱の病原体であるR. japonicaは検出されなかった.

表1-7. マダニ類の紅斑熱群リケッチア保有状況調査

種		保健所別検体数				延长体粉	Rickettsia spp.		
	岩出	橋本	海南	湯浅	御坊	田辺	串本	些快冲 数	Rickettsia spp.
タカサゴキララマダニ		2		7	1	2	1	13	
タイワンカクマダニ						1		1	
キチマダニ	3	1	4	2	7	10	4	31	1
オオトゲチマダニ				2	18	24	7	51	3
ヒゲナガチマダニ							1	1	
タカサゴチマダニ				3			4	7	
フタトゲチマダニ							10	10	2
ツノチマダニ							1	1	
ヤマトマダニ							4	4	
計	3	3	4	14	26	37	32	119	6

(3) 依頼検査

平成27年度に実施した依頼検査は表1-8のとおりであった.

表1-8. 依頼検査

	衣Ⅰ	一8. 依賴梗貧	
種別	検体数	検査項目	検査数
		一般生菌数	119
		大腸菌群(定性)	116
		大腸菌群(定量)	1
		真菌数	99
		サルモネラ	13
食 品	123	黄色ブドウ球菌	27
		クロストリジウム	12
		芽胞数	94
		大腸菌(定性)	7
		セレウス菌	12
		腸炎ビブリオ	3
その他	2	一般生菌数	2
· C 071世	2	大腸菌群(定性)	2
計	125		507

(4) G L P (業務管理基準)の実施

外部精度管理

(一財) 食品薬品安全センターが実施する外部精度管理調査に参加し、大腸菌群およびサルモネラ属菌判定検査の精度管理を実施したところ、結果はすべて良好であった.

2) 衛生グループ

(1) 行政検査

平成27年度に行った食品、医薬品等の行政検査は796検体(延検査項目数37,621)で、その内容は表 2-1 のとおりであった。

表2-1. 行政検査

区分	内容	検体数	延検査数
	食品関係		
	食品添加物検査(過酸化水素、ソルビン酸等)	181	1,081
	残留農薬検査(農産物中の有機リン系農薬等)	110	32,453
	残留動物用医薬品検査(畜水産物中の合成抗菌剤	110	3,135
	おもちゃ検査(乳幼児用おもちゃの鉛、カドミウム)	10	24
食品·生活衛生課	鯨類等のメチル水銀調査	10	10
艮吅 工心间工床	放射性物質検査	341	682
	外部精度管理(GLPに関する業務)	3	40
	家庭用品等		
	家庭用品検査(乳幼児用衣類中のホルムアルデヒド) 10	14
	水質関係		
	井戸水の水質検査	20	180
薬務課	医薬品等検査(定量試験)	1	2
	計	796	37,621

a) 食品関係

(a)食品添加物検査(表2-2)

i) 殺菌料(過酸化水素)

しらす6検体について過酸化水素の定量試験を行った.

その結果,すべての検体から過酸化水素 $(0.2\sim0.5 mg/kg)$ を検出したが、いずれも天然由来のものと判断した.

また、しらす34検体について、食品衛生監視員が行う過酸化水素簡易試験キットを作成し、 指導を行った. その内、1 検体において過酸化水素の使用が疑われ、当センターで定量試験 を行った結果、過酸化水素を34mg/kg検出した.

ii)保存料(ソルビン酸,安息香酸,デヒドロ酢酸,パラオキシ安息香酸エチル,パラオキシ安息香酸プロピル,パラオキシ安息香酸イソプロピル,パラオキシ安息香酸ブチル,パラオキシ安息香酸メチル)

食肉製品,魚肉ハム・ソーセージ,みそ・しょうゆ,漬物,菓子土産品合計50検体について,延べ370項目の定量試験を行った.

その結果、しょうゆ1検体からパラオキシ安息香酸ブチル(パラオキシ安息香酸として0.08 g/L)を検出したが、使用基準値以下であった。また漬物1検体から検出した安息香酸 (0.01 g/kg) は天然由来のものと判断した。なお、他の保存料についてはすべて定量下限値未満であった。

iii) 発色剤(亜硝酸根)

食肉製品,ハム・ソーセージ10検体について,亜硝酸根の定量試験を行った.

その結果、4 検体から亜硝酸根($0.001\sim0.007$ g/kg)を検出したが、いずれも使用基準値以下であり、他はすべて定量下限値未満であった.

表2-2. 食品添加物検査,						
殺菌料		<u> </u>	<u>検体数</u>	検出数 7	<u>検出値</u> 0.2~0.5(天然由来), 34	
权图析	過酸化水素 (簡易試験)	釜揚げしらす	34	1	6.2 6.6(入旅田水), 64	
		食肉製品	5	0		
	ソルビン酸 (g/kg)	魚肉ハム・ソーセージ みそ	5 6	0		
	フルビンBy (g/kg/	しょうゆ	4	0		
		漬物	10	0		
保		菓子土産品	20	0		
存		みそ	6	0		
料	安息香酸 (g/kg)	しょ う ゆ 漬物	4 10	0 1	0.01	
		菓子土産品	20	0	0.01	
		みそ	6	0		
	デヒドロ酢酸 (g/kg)	しょうゆ 漬物	4 10	0		
		□ 煩初 菓子土産品	20	0		
	パラオキシ安息香酸 (g/kg)	みそ	6	0		
	パラオキシ安息香酸エチル	しょうゆ	4	1	0.08(g/L)	
	パラオキシ安息香酸プロピル パラオキシ安息香酸イソプロピル	漬物 菓子土産品	10 20	0		
	パラオキシ安息香酸ブチル	未丁工座吅	20	U		
	パラオキシ安息香酸イソブチル					
	°-1	みそ	6	0		
	パラオキシ安息香酸メチル (g/kg)	しょうゆ 漬物	4 10	0		
		菓子土産品	20	0		
発色剤	亜硝酸根 (g/kg)	食肉製品	5	4	0.001~0.007	
		魚肉ハム・ソーセーシ	5	0		
	サッカリンナトリウム (g/kg)	みそ・しょうゆ 漬物	10 10	0		
	77777777 (g/Ng/	菓子土産品	10	ő		
甘		みそ・しょうゆ	10	0		
味 料	アセスルファムカリウム (g/kg)	漬物 菓子土産品	10 10	0 O		
^		未丁工 <u>性</u> 明 みそ・しょうゆ	10	0		
	アスパルテーム (g/kg)	漬物	10	0		
		菓子土産品	10	0		
	ズルチン (g/kg)	みそ・しょうゆ 漬物	10 10	0		
	スル/ン (g/ kg/	菓子土産品	10	0		
		レモン	5	2	0.0007~0.0008	
	イマザリル (g/kg)	グレープフルーツ	5 5	4 4	0.0006~0.0011 0.0012~0.0028	
		オレンジ類 バナナ	5	0	0.0012~0.0028	
		レモン	5	1	0.001	
防	チアベンダゾール (g/kg)	グレープフルーツ	5	1	0.002	
か び		オレンジ類 バナナ	5 5	1 0	0.002	
剤		レモン	5	0		
	オルトフェニルフェノール (g/kg)	グレープフルーツ	5	0		
		オレンジ類	5 5	0		
		バナナ レモン	5	0		
	ジフェニル (g/kg)	グレープフルーツ	5	0		
		オレンジ類	5	0		
		バナナ レモン	5 5	0		
	フルジオキソニル (g/kg)	グレープフルーツ	5	0		
		オレンジ類	5	0		
		バナナ レモン	5 5	0		
	アゾキシストロビン (g/kg)	グレープフルーツ	5	0		
		オレンジ類	5	0		
		バナナ	5	0		
	ピリメタニル (g/kg)	レモン グレープフルーツ	5 5	1	0.002	
	_ , , _ , , , , , , , , ,	オレンジ類	5	0		
		バナナ	5	0		
酸化	フ [*] チルヒト [*] モキシアニソール,シ [*] フ [*] チルヒト [*] ロキシトルエン, 没食子酸プ [°] ロヒ [*] ル,没食子酸オクチル,tert-フ [*] チルヒト [*] ロキノン,	魚介乾製品 油脂・バター	10 10	0		
防止剤	4ーヒト・ロキシメチルー2,6ーシーtertーフ・チルフェノール,	, , , , , , , , , , , , , , , , , , ,	'			
	没食子酸ラウリル,ノルシ゛ヒト゛ロク゛アヤレチック酸 (各g/㎏)					
羊	食用赤色2号, 食用赤色3号, 食用赤色40号, 食用赤色102号,食用赤色104号, 食用赤色106号,食用赤色4号,食用赤色5号,食用赤色12号,食用赤色1号	菓子土産品	10	0		
着 色	食用赤色106号,食用黄色4号,食用黄色5号,食用緑色3号,食用青色1号, 食用青色2号,木°ンソー3尺,木°ンソーSX,木°ンソー6R,					
料	アシット、イエロー3,アシット、ク、リーン9,アシット、レット、1,					
	アシット・レット・13,アシット・レット・26,アソ・ルヒ・ン,					
	ナフトールイエローS水和物,キシレンファストイエロー2G, ブラックPN,アシッドブラック1					
	7 777PN,7 77F 7 7771	<u>l</u>	I	ıl		

- iv) 甘味料(サッカリンナトリウム,アセスルファムカリウム,アスパルテーム,ズルチン) みそ・しょうゆ,菓子土産品,漬物各10検体合計30検体について,延べ120項目の定量試験を行った.その結果、すべて定量下限値未満であった.
- v) 防かび剤(イマザリル, チアベンダゾール, オルトフェニルフェノール, ジフェニル, フルジオキソニル, アゾキシストロビン, ピリメタニル)

レモン, グレープフルーツ, オレンジ類, バナナ各 5 検体合計20検体について, 延べ140項目の定量試験を行った.

その結果、レモン 2 検体、グレープフルーツ 4 検体、オレンジ類 4 検体からイマザリル $(0.0006\sim0.0028g/kg)$ を、レモン、グレープフルーツ、オレンジ類各 1 検体からチアベン ダゾール $(0.001\sim0.002g/kg)$ を、グレープフルーツ 1 検体からピリメタニル (0.002g/kg) を検出したが、いずれも使用基準値以下であり、他はすべて定量下限値未満であった.

vi)酸化防止剤(ブチルヒドロキシアニソール,ジブチルヒドロキシトルエン,没食子酸プロピル,没食子酸オクチル,没食子酸ラウリル,tert-ブチルヒドロキノン,ノルジヒドログアヤレチック酸,4-ヒドロキシメチル-2,6-ジ-tert-ブチルフェノール)

魚介乾製品,油脂・バター各10検体合計20検体について,延べ160項目の定量試験を行った. その結果,すべて定量下限値未満であった.

vii) 着色料(食用赤色 2 号,同 3 号,同 40 号,同 102 号,同 104 号,同 106 号,食用黄色 4 号,同 5 号,食用緑色 3 号,食用青色 1 号,同 2 号,ポンソ-3 R,ポンソ-3 R,ポンソ-6 R,ナフトールイエローS 水和物,アシッドイエロー3,キシレンファストイエロー2 G,アシッドレッド 1,アシッドレッド 13,アシッドレッド 26,アゾルビン,アシッドグリーン 9,ブラック 1 P N,アシッドブラック 1)

菓子土産品10検体について、延べ240項目の定性試験を行った。その結果、いずれの検体からも着色料は検出されなかった。

(b) 残留農薬検査

農産物110検体(表 2-3) について,344項目の農薬成分中(表 2-4)延べ32,453項目の 試験を行った.

その結果,28成分(表2-5)延べ69項目の農薬を検出し、そのうち、チンゲンサイとホウレンソウ各1検体から残留基準値を超えたエトフェンプロックスを0.24ppmと0.40ppmそれぞれ検出した.他の農薬についてはすべて定量下限値未満であった.

表2-3. 残留農薬検査の農産物と検体数

女 3.					
農産物名	検体数	県内産	県外産	輸入品	
ウメ(青梅)	11	11	0	0	
そら豆	7	6	1	0	
モモ	9	9	0	0	
トマト	9	6	3	0	
レモン	5	0	0	5	
グレープフルーツ	5	0	0	5	
オレンジ類	5	0	0	5	
バナナ	5	0	0	5	
カキ	10	10	0	0	
チンゲンサイ	8	8	0	0	
ブロッコリー	9	8	1	0	
ホウレンソウ	9	9	0	0	
ミカン	9	9	0	0	
キウイ	9	6	1	2	
計	110	82	6	22	

農薬名	<u> </u>	性留農薬検査項目 農薬名	農薬名
1,1-ジクロロ-2,2-ピス(4-エチルフェニル)エタン	87 クロマフェノジド	174 トリアジメホン	261 フルシトリネート
2)5)6)	88 クロメプロップ	175 トリアスルフロン	262 フルシラゾール
2-(1-ナフチル)アセタミド 1)2)5)6)	89 クロランスラムメチル 1)2)3)4)5)	176 トリアゾホス	263 フルトラニル
BHC(γ) 1)4)5)6)	90 クロリダゾン 1)2)3)5)	177 トリアレート	264 フルトリアホール 1)3)4)5)6)
EPN 4)5)6)	91 クロリムロンエチル	178 トリシクラゾール	265 フルフェナセット
EPTC	92 クロルエトキシホス	179 トリチコナゾール	266 フルフェノクスロン
TCMTB 1)2)3)5)6)	93 クロルスルフロン 1)2)3)4)6)	180 トリブホス	267 フルフェンピルエチル 3)5)6)
XMC 1)2)3)5)6)	94 クロルタールジメチル	181 トリフルムロン 1)2)3)4)5)	268 フルミオキサジン 1)
アザコナゾール 1)2)4)5)6)	95 クロルピリホス	182 トリフルラリン 2)3)4)5)6)	269 フルミクロラックペンチル 1)2)3)4)
アザメチホス	96 クロルピリホスメチル	183 トリフロキシストロビン	270 フルメツラム 1)2)3)4)6)
アシヘンソ・ラルーSーメチル 1)3)	97 クロルフェナピル	184 トリフロキシスルフロン 1)2)3)5)6)	271 フルリドン
アジムスルフロン	98 クロルフェンソン	185 トルクロホスメチル	272 プレチラクロール
アジンホスメチル	99 クロルフェンビンホス(E体)	186 トルフェンピラド	273 プロシミドン
アセタミプリド	100 クロルフェンビンホス (Z体)	187 ナプタラム 4) 188 ナプロアニリド	274 プロチオホス 2)3)4)5)6)
アセトクロール アセフェート	101 クロルブファム 102 クロルプロファム	188 ナプロゲニット 189 ナプロパミド	275 プロパキザホップ 276 プロパクロール
アゾキシストロビン 1)2)4)5)6)	103 クロルベンシド 2)4)	190 ニトロタールイソプロピル 2)4)5)6)	277 プロパジン
アトラジン	104 クロロクスロン	191 ノバルロン	277 プロパング 278 プロパニル
アニロホス	105 クロロネブ	192 ノルフルラゾン	279 プロパホス 2)3)4)5)
アメトリン 2)3)4)5)6)	106 クロロベンジレート	193 パクロブトラゾール	280 プロパルギット 1)4)5)6)
アラクロール 1)2)3)4)6)	107 シアノホス	194 パラチオン	281 プロピコナゾール
アラマイト	108 ジウロン 1)2)3)5)6)	195 パラチオンメチル	282 プロピザミド
アルジカルブ 1)2)4)5)	109 ジエトフェンカルブ	196 ハルフェンプロックス 2)3)4)5)6)	283 プロフェノホス
アルドキシカルブ 1)2)4)5)	110 シクロエート 1)2)3)4)5)	197 ハロキシホップ 1)2)3)4)	284 プロポキシカルバゾン 1)2)3)4)5)
アレスリン 1)2)4)5)6)	111 ジクロシメット	198 ハロスルフロンメチル	285 プロポキスル
イオドスルフロンメチル 1)2)3)4)6)	112 ジクロスラム 1)2)3)4)6)	199 ピコリナフェン	286 プロマシル
イサゾホス 1)4)6)	113 シクロスルファムロン	200 ビテルタノール	287 プロメトリン
イソキサチオン	114 ジクロトホス	201 ビフェノックス 4)6)	288 ブロモブチド
イソキサフルトール	115 ジクロフェンチオン 1)2)3)5	202 ビフェントリン 2)3)4)5)6)	289 ブロモプロピレート
イソフェンホス 1)2)5)6)	116 ジクロフルアニド 6)	203 ピペロニルブトキシド 1)3)4)5)6)	290 ブロモホス
イソフェンホスオキソン 1)2)5)6)	117 ジクロホップメチル 1)3)5)6)	204 ピペロホス	291 ブロモホスエチル 3)
イソプロカルブ	118 ジクロラン 2)3)4)5)6)	205 ピラクロストロビン	292 フロラスラム 1)2)3)4)6)
イソプロチオラン	119 ジクロルボス 1)2)4)5)6)	206 ピラクロホス	293 ヘキサコナゾール 1)2)4)5)6)
イプロジオン 8)	120 ジコホール(分解物) 2)	207 ピラゾスルフロンエチル	294 ヘキサジノン
イプロバリカルブ	121 シニドンエチル 3)4)6)	208 ピラゾホス	295 ヘキサフルムロン 1)2)3)5)6)
イプロベンホス	122 シノスルフロン	209 ピラゾリネート	296 ヘキシチアゾクス
イマザキン 2)3)4)	123 シハロトリン(_ア) 3)	210 ピラフルフェンエチル 1)3)4)6)	297 ベナラキシル
イマサ・メタヘ・ンス・メチルエステル 1)2)4)5)6)	124 シハロトリン(λ) 3)	211 ピリダフェンチオン	298 ベノキサコール
イマザリル 1)2)4)5)	125 シハロホップブチル	212 ピリダベン 1)2)3)4)6)	299 ペノキススラム
イミダクロプリド	126 ジフェナミド	213 ピリフェノックス 1)3)4)5)6)	300 ペルメトリン(cis体) 2)3)4)6)7)
イミベンコナゾール 1)4)5)	127 ジフェノコナゾール	214 ピリフタリド	301 ペルメトリン(trans体) 2)3)4)6)7)
インダノファン	128 シフルフェナミド 129 ジフルフェニカン 1)3)4)6)	215 ピリブチカルブ	302 ペンコナゾール
インドキサカルブ ウニコナゾールP 1)5)	130 ジフルグェーカン (73)4/6/	216 ピリプロキシフェン 217 ピリミカーブ	303 ベンシクロン 304 ベンスルフロンメチル
エスプロカルブ	131 シプロコナゾール	217 こりミカーフ 218 ピリミジフェン	305 ベンゾフェナップ 1)2)3)5)6)
エタメツルフロンメチル	132 シプロジニル	210 ピリミノバックメチル(E体)	306 ベンダイオカルブ
エタルフルラリン 2)3)4)5)6)	133 シペルメトリン	210 ピリミノバックメチル(Z体)	307 ペンディメタリン
エチオフェンカルブ	134 シマジン	221 ピリミホスメチル	308 ベンフルラリン 2)3)4)5)6)
エチオン	135 シメコナゾール	222 ピリメタニル 2)4)5)6)	309 ベンフレセート
エディフェンホス	136 ジメタメトリン	223 ビンクロゾリン	310 ホサロン
エトキサゾール 2)3)4)5)6)	137 ジメチリモール 1)2)3)5)6)	224 フィプロニル 1)	311 ボスカリド
エトキシスルフロン 1)2)3)4)6)	138 ジメチルビンホス 1)2)	225 フェナミホス	312 ホスチアゼート
エトフェンプロックス 2)4)5)6)	139 ジメテナミド	226 フェナリモル	313 ホスメット 6)
エトフメセート	140 ジメトモルフ 1)2)5)6)	227 フェニトロチオン	314 ホラムスルフロン
エトプロホス	141 シメトリン 4)5)	228 フェノキサニル 1)2)4)5)6)	315 ホルクロルフェニュロン
エトリムホス	142 ジメピペレート 1)2)6)	229 フェノキサプロップエチル 1)2)4)5)6)	316 ホレート 2)3)4)5)6)
エポキシコナゾール	143 スピロキサミン 1)	230 フェノキシカルブ	317 マラチオン
α-エンドスルファン 2)3)4)5)6)	144 スピロジクロフェン 1)2)4)6)	231 フェノチオカルブ	318 ミクロブタニル
β-エンドスルファン 2)3)4)5)6)	145 スルフェントラゾン 1)2)3)4)5)	232 フェノトリン 6)	319 メカルバム 3)4)6)
オキサジアゾン	146 スルホスルフロン	233 フェノブカルブ	320 メソスルフロンメチル 1)2)3)4)6)
オキサジクロメホン	147 ダイアジノン	234 フェリムゾン	321 メソミル 2)4)5)
オキサミル	148 ダイアレート	235 フェンアミドン 1)2)3)4)6)	322 メタベンズチアズロン
オキシカルボキシン	149 ダイムロン	236 フェンクロルホス	323 メタミドホス
オキシフルオルフェン 2)3)4)5)6)	150 チアクロプリド	237 フェンスルホチオン	324 メタラキシル 1)2)5)6)
カズサホス	151 チアベンダゾール 1)2)5)6)	238 フェンチオン	325 メチオカルブ 1)2)4)5)6)
カフェンストロール 3)4)5)6)	152 チアメトキサム	239 フェントエート	326 メチダチオン 1)4)5)6)
カルバリル	153 チオジカルブ 2) 154 チオダンカルブ	240 フェンバレレート 3)	327 メトキシクロール
カルフェントラゾンエチル	154 チオベンカルブ	241 フェンピロキシメート 242 フェンブコナゾール	328 メトキシフェノシド
カルプロパミド カルボキシン 4)	155 チオメトン 2)3)4)6) 156 チジアズロン 1)2)3)5)	242 フェンノコナソール 243 フェンプロパトリン 2)3)4)5)6)	329 メトスラム 2)3)4)6) 330 メトスルフロンメチル
カルボフラン 4) カルボフラン 1)2)4)5)	156 デジァスロン 1/2/3/5/ 157 チフェンスルフロンメチル	244 フェンプログトリン 2/3/4/3/6/	330 メトスルノロンメデル 331 メトミノストロビン(E体)
カルボフラン (分解物) 1)2)4)5)	157 チブエンスルプロンプテル	244 フェンノロビモルフ 245 フェンヘキサミド 1)2)3)5)6)	331 メトミノストロピン(E体) 332 メトミノストロピン(Z体)
キザロホップエチル 1)2)4)5)6)	159 テクナゼン	246 フェンメディファム	333 メトラクロール
キナルホス	160 テトラクロルビンホス	247 フサライド 1)2)3)5)6)	334 メパニピリム 1)2)4)5)6)
キノキシフェン	161 テトラコナゾール	248 ブタクロール	335 メフェナセット
キノクラミン 1)2)3)4)5)	162 テトラジホン	249 ブタフェナシル	336 メフェンピルジエチル
キノメチオナート 3)	163 テニルクロール	250 ブタミホス	337 メプロニル
キントゼン 2)3)4)5)6)	164 テブコナゾール 1)2)4)5)6)	251 ブチレート	338 モノクロトホス
クミルロン	165 テブチウロン	252 ブピリメート	339 モノリニュロン
クレソキシムメチル	166 テブフェノジド	253 ブプロフェジン	340 ラクトフェン 1)2)3)5)6)
クロキントセットメキシル	167 テブフェンピラド	254 フラザスルフロン 1)2)3)4)6)	341 リニュロン
クロジナホップ酸 1)3)	168 テフルトリン 3)	255 フラチオカルブ	342 ルフェヌロン
クロゾリネート 3)6)	169 テフルベンズロン 1)2)3)4)5)	256 フラムプロップメチル	343 レスメトリン 2)3)
クロチアニジン	170 テルブトリン	257 フラメトピル	344 レナシル
クロフェンセット 3)4)	171 テルブホス	258 フルアクリピリム	
クロフェンテジン 1)3)5)	172 トラルコキシジム	259 フルアジッホップ 1)2)3)4)	
クロマゾン	173 トリアジメノール	260 フルキンコナゾール 3) 3)レモン、グレープフルーツ、オレンジ類、バナ	
1)ウメ、そら豆のみ	2)モモ、トマトのみ	っい エン・ガレニ ブフリニツ ナレン お知 バナ	+n x

表2-5. 農産物検出結果

検出農薬	作物名	検体数	検出数	検出値(ppm)
アセタミプリド	そら豆	7	1	0.11
	カキ	10	1	0.02
	チンゲンサイ	8	1	0.83
	ホウレンソウ	9	1	0.51
アゾキシストロビン	ホウレンソウ	9	1	0.36
イプロジオン	キウイ	9	2	0.01~0.03
イミダクロプリド	グレープフルーツ	5	1	0.01
インドキサカルブ	ブロッコリー	9	1	0.01
エトフェンプロックス	チンゲンサイ	8	1	0.24
	ホウレンソウ	9	1	0.40
クレソキシムメチル	ウメ(青梅)	11	3	0.01~0.51
クロチアニジン	モモ	9	1	0.02
	カキ	10	1	0.01
クロルピリホス	レモン	5	2	0.04~0.05
	オレンジ	5	2	0.02~0.04
	バナナ	5	3	0.01~0.02
クロルフェナピル	トマト	9	1	0.02
	グレープフルーツ	5	1	0.02
	バナナ	5	1	0.03
	チンゲンサイ	8	1	0.67
 ジフェノコナゾール	ウメ(青梅)	11	9	0.01~0.15
	カキ	10	3	0.01~0.02
シフルフェナミド	トイト	9	1	0.01
シペルメトリン	グレープフルーツ	5	 1	0.02
2 7221 72	カキ	10	3	0.01~0.02
 ダイアジノン	チンゲンサイ	8	1	0.06
チアクロプリド		9	 1	0.03
トリアジメノール	 そら豆	7	 1	0.01
トリフロキシストロビン	グレープフルーツ	5	2	0.01
トルフェンピラド	トマト	9	<u>-</u> 1	0.13
ビテルタノール	ウメ(青梅)	11	 1	0.21
ピラクロストロビン	グレープフルーツ	5	3	0.02~0.03
ビリダベン	トマト	9	1	0.02
ピリプロキシフェン	グレープフルーツ	<u>5</u>	3	0.01~0.02
ブプロフェジン	<u></u>	<u></u>	1	0.04
ノノロノエノン	キウイ	9	1	0.04
フルフェノクフロン	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9		
<u>フルフェノクスロン</u> ペルメトリン	カキ	10	<u>1</u> 1	0.02
ヘルストリン	•		•	0.01
<u> </u>	ホウレンソウ	9	1	1.15
ボスカリド	トマト	9	2	0.01~0.13
10.15.11	バナナ	5	1	0.01
メソミル	ホウレンソウ	9	1	0.09
ルフェヌロン	トマト	9	2	0.01~0.05

(c) 残留動物用医薬品検査(5-プロピルスルホニル-1 Hベンズイミダゾール-2-アミン、アンピシリン, 酢酸トレンボロン, デキサメタゾン, エリスロマイシン、エンロフロキサシン, エトパベート, レバミゾール, 酢酸メレンゲステロール, ナリジクス酸, リンコマイシン, オルメトプリム, オキソリニック酸, ピリメタミン, スルファクロルピリダジン, スル

ファセタミド,スルファジアジン,スルファジメトキシン,スルファジミジン,スルファドキシン,スルファメラジン,スルファメトキサゾール,スファメトキシピリダジン,スルファモノメトキシン,スルファピリジン,スルファキノキサリン,スルファチアゾール,スルフイソゾール,チアベンダゾール,チアムリン,チルミコシン,トリクロルホン,トリメトプリム,キシラジン,ファムフール)

県内産畜水産物69検体,県外産畜水産物19検体,輸入畜水産物22検体合計110検体(表 2-6)について、モニタリング検査として延べ3,135項目の定量試験を行った.

その結果, すべての検体において, いずれの項目も定量下限値未満であった.

表2-6. 動物用医薬品検査

X- 0. 31 10 11 EX HI IX E					
畜水産物名	検体数	県内産	県外産	輸入品	
養殖川魚	4	4	0	0	
(鮎、アマゴ)					
養殖魚介類	41	25	11	5	
⟨ マダイ, ヒラメ, マグロ, ⟩					
シマアジ, ブリ, エビ,					
し カンパチ, サーモン ノ					
牛肉	15	5	3	7	
豚肉	10	0	3	7	
鶏肉	20	15	2	3	
鶏卵	20	20	0	0	
計	110	69	19	22	

(d) 有害物質検査

鯨類10検体について、メチル水銀の定量試験を行った(表 2-7). その結果、7 検体からメチル水銀(0.15~6.9mg/kg)を検出した.

表2-7. 有害物質検査

次二 / F F F F F F F F F F F F F F F F F F						
項目名	品名	検体数	検出数	検出値		
	鯨類(オバキ)	1	1	0.15mg/kg		
	鯨類(尾身)	1	1	3.6mg/kg		
	鯨類(腹肉)	2	2	0.94mg/kg, 3.8mg/kg		
	鯨類(コロ)	1	0			
メチル水銀	鯨類(骨ハギ)	1	1	6.9mg/kg		
グノル小型	鯨類(赤肉)	1	0			
	鯨類(皮)	1	0			
	鯨類(ウデモノ)	1	1	2.7mg/kg		
	鯨類(干物)	1	1	5.3mg/kg		
	計	10	7			

(e)おもちゃ検査

乳幼児用おもちゃ10検体(12部位)のうち、ポリ塩化ビニルを主体とする材料を用いて製造された部分3検体(4部位)について重金属(鉛の量として)及びカドミウムの溶出試験を、参膜7検体(8部位)について鉛及びカドミウムの溶出試験を行った(表2-8).

その結果, すべて規格基準に適合していた.

表2-8. おもちゃ検査

	~- ~: 00 0 3 1 1	<u> </u>			
項目名	品名	検体数	検体部位	試験部位	結果
重金属(鉛の量として)	風呂用玩具	2	3	ポリ塩化ビニル	適合
カドミウム	玩具	1	1	ハツ塩ルビール	適合
	装飾品玩具	1	1		適合
鉛	木製玩具	4	5	塗膜	適合
カドミウム	電車	1	1	空 展	適合
	車	1	1		適合
	計	10	12		

(f)食品中の放射性物質検査

和歌山県内産食品341検体について、放射性セシウム(Cs134+Cs137)の検査を行った。 その結果、すべて検出限界値未満であった。 (表 2-9).

(g)外部精度管理

(一財)食品薬品安全センターが実施する外部精度管理調査に参加し、食品添加物(安息香酸の定量)および残留動物用医薬品(スルファジミジンの定量)、残留農薬(チオベンカルブ、マラチオン、クロルピリホス、テルブホス、フルシトリネート及びフルトラニルの6種農薬中3種農薬の定性と定量)の試験について精度管理を実施した.

表2-9. 放射性セシウム(Cs134+Cs137)検査

分類	食品名	検体数	結果
7277	鮎	3	N.D
	アマゴ	1	N.D
	タイ	19	N.D
魚介類	マグロ	1	N.D
	カンパチ	1	N.D
	シマアジ	3	N.D
	生かき ウメ	<u>1</u> 11	N.D N.D
	・ファ そら豆	6	N.D N.D
	+ +	9	N.D
	トムト	6	N.D
曲女师	カキ	10	N.D
農産物	チンゲンサイ		N.D
	ブロッコリー	8 8	N.D
	ホウレンソウ	9 9	N.D
	ミカン キウイ	9	N.D
	<u>キワイ</u>	6 13	N.D
畜産物	牛肉 鶏肉	33	N.D N.D
田庄彻	第9 第9	20	N.D N.D
<u> </u>	Am) 512		
鯨類(加工品含む)		10	N.D
加工食品	釜揚げしらす	4	N.D
	生食用鮮魚介類 魚介乾製品	13	N.D
	無介乾製品 金色製品(1)	9 4	N.D
	食肉製品(ハム)	4	N.D
	みそ 醤油	6 4	N.D N.D
	自用 - 	23	N.D
	漬物 カット野菜	9	N.D
	生めん		N.D
	ゆでめん	5 5 2	N.D
	チーズ	2	N.D
	食用油脂	1	N.D
	洋生菓子	10	N.D
	菓子土産品	19	N.D
	アイスクリーム類・氷菓 はちみつ	30 10	N.D N.D
-	 はらかり 計	341	IN.D
	P.I.	ודט	

N.D:検出限界値未満(20 ベクレル/kg)

b) 家庭用品等検査

乳幼児用衣類10検体(14部位)について、遊離残留ホルムアルデヒドの検査を行った (表 2 -10)

その結果, すべての検体が家庭用品の基準に適合していた.

表2-10. 家庭用品等検査

	及2 10. 外延川III	可以且		
項目名	品名	検体数	検体部位	結果
	スタイ	1	1	適合
	くつした	1	1	適合
	腹巻き	2	2	適合
ホルムアルデヒド	下着	2	2	適合
ホルムノルノにド	ボディスーツ	1	2	適合
	シャツ	1	3	適合
	ミン	1	2	適合
	オムツ	1	1	適合
	計	10	14	

c) 飲用水試験(一般細菌数と大腸菌を除く.)

災害時における井戸水活用のための基礎資料を得るため、井戸水20検体について飲用水試験(亜硝酸態窒素、硝酸態窒素及び亜硝酸態窒素、塩化物イオン、全有機炭素、pH、味、臭気、色度、濁度)を行った.

その結果, 9検体が水道法に基づく水質基準に不適合であった.

d) 医薬品等検査

医薬品等一斉監視指導に伴う検査として,指定医薬部外品1検体について,チアミン硝化物,トコフェロール酢酸エステルの定量試験を行った.

その結果, 規格基準に適合していた.

(2) 受託研究(表 2-11)

表2-11. 受託研究

検体	内容	検体数	延検査数
生薬・生薬を原料とした製剤	放射性ヨウ素 放射性セシウム(Cs134, Cs137)	29	87
乳児用食品·牛乳·農産物等	放射性セシウム(Cs134+Cs137)	30	30
じゃばら	残留農薬	22	4,400
	計	81	4,517

a) 生薬及び生薬を原料とした製剤の放射線量の検討

生薬及び生薬を原料とした製剤の品質管理向上をめざす目的で、国内産生薬及びその生薬を原料とした製剤29検体について、放射性ョウ素 (I-131) と放射性セシウム(Cs134, Cs137)検査延べ87項目の測定を行った.

b) 乳児用食品,牛乳及び農産物中の放射性物質実態調査

平成24年4月から放射性セシウムの基準値が新しく設定され、流通食品の放射性物質検査を実施することにより、食品の安全・安心の確保をはかる目的で、流通する乳児用食品、牛乳及び一般食品30検体について、放射性セシウム(Cs134+Cs137)検査を行った.

c) ジャバラの残留農薬調査

ジャバラの安全性向上をめざす目的で、収穫前5検体と収穫時17検体、計22検体について、残留農薬200成分延べ4、400項目の分析を行った.

3) 大気環境グループ

大気環境グループの業務は、機器分析を中心とする大気関係分析業務と自動測定機による大気汚染常時監視測定業務に大別される.

(1) 大気関係分析業務

平成27年度の大気関係分析業務実績は、表3-1のとおりであった.

a) 二酸化いおう・二酸化窒素の測定

大気汚染常時監視網の未整備地域における大気汚染状況を把握するために、トリエタノールアミン含浸ろ紙・パッシブ法により測定を実施した.(岩出市,美浜町,1ヶ月×12回×2地点)

b) 微小粒子状物質の成分分析

大気汚染防止法に基づき, 微小粒子状物質 (PM2.5) の成分分析を実施した. 地点は海南市の1地点で各季節14日間,計56日間調査を行った.

c) 悪臭物質の測定

公害防止協定工場における悪臭に係る協定値の遵守状況を把握するため測定を実施した.

d) 煙道排ガス測定

大気汚染防止法等に規定するばい煙発生施設等から排出される排ガス中の窒素酸化物,ばいじん,塩化水素の濃度に係る基準値の遵守状況を把握するため測定を実施した.

e) 重油等燃料中のいおう分含有率測定

大気汚染防止法に規定するばい煙発生施設で使用する燃料中のいおう分含有率に係る基準値及 び届出値の遵守状況を把握するため測定を実施した.

f) 有害大気汚染物質モニタリング

大気汚染防止法に基づき、環境汚染に係る有害大気汚染物質(248物質)がリストアップされている.このうち優先取組物質23物質中19物質について、海南市(一般環境)、有田市(発生源周辺)、岩出市(沿道)の3地点で測定を実施した.(1回/1ヶ月)

g) 環境測定分析統一精度管理調查

環境測定分析の信頼性の確保及び精度の向上を図る観点から、測定分析能力の資質向上を目指 して模擬大気試料(イオン成分,アルデヒド類)の分析を行った.

h) 化学物質環境汚染実態調査

環境省の委託を受けて、初期環境調査及び詳細環境調査(大気)を実施した.

(2) 大気汚染常時監視測定業務

平成27年度の大気汚染常時監視実績は表3-2のとおりであった.

テレメーターシステムによる大気汚染常時監視は、県内の8市3町の12地点での測定であった. また、この測定の補完調査及び自動車排ガスの実態調査のため、環境測定車による測定を実施した.

表3-1. 大気関係分析業務各種測定の実施状況

依頼者	事業名		試料数	測定延項目数
	パッシブ法による二酸化いおう、二	酸化窒素の測定	24	48
	微小粒子状物質成分分析	112	2, 240	
環	悪臭物質の測定	6	12	
境	煙道排ガス測定(質	窒素酸化物)	27	54
管	(1)	ずいじん)	4	8
理	<u>(</u> †	塩化水素)	6	12
課	重油等燃料中のいおう分含有率測別	定	14	14
	有害大気汚染物質調査 ('	VOCs)	36	396
	(3	金属)	36	84
	(7	水銀)	36	36
	(理	酸化エチレン)	12	12
		アルデヒド類)	36	72
	環境測定統一精度管理調査		3	30
	化学物質環境実態調査	21	105	
	合 計		373	3,123

[測定項目内訳]

パッシブ法:二酸化いおう,二酸化窒素

微小粒子状物質

重量

炭素成分:有機炭素5種類,無機炭素3種類

金属成分: Al,Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Se,Rb,Mo,Sb,Cs,Ba,La,Ce,Hf,W,Ta,Pb

イオン成分:塩化物イオン,硝酸イオン,硫酸イオン,ナトリウムイオン,

アンモニウムイオン,カリウムイオン,マグネシウムイオン,カルシウムイオン

悪臭物質:メチルメルカプタン,硫化水素

煙道排ガス測定:窒素酸化物,ばいじん,塩化水素,残存酸素

重油等燃料中のいおう分: いおう分

有害大気汚染物質調査

VOCs: アクリロニトリル, クロロホルム, 塩化ビニルモノマー, ベンゼン,

トリクロロエチレン, テトラクロロエチレン, 1,3-ブタジエン, ジクロロメタン,

1,2-ジクロロエタン,トルエン,塩化メチル

金属: ひ素, ベリリウム, マンガン, 全クロム, ニッケル, 水銀

アルデヒド類:ホルムアルデヒド,アセトアルデヒド

酸化エチレン

環境測定分析統一精度管理調查(模擬大気試料)

イオン成分:塩化物イオン、硝酸イオン、硫酸イオン、ナトリウムイオン、

アンモニウムイオン, カリウムイオン, マグネシウムイオン, カルシウムイオン

アルデヒド類:ホルムアルデヒド,アセトアルデヒド

化学物質環境実態調査:2,3-エポキシ-1-プロパノール,有機スズ化合物(ジメチルスズ化合物,

モノブチルスズ化合物,ジブチルスズ化合物),イソブチルアルデヒド

表3-2. 大気汚染常時監視測定の実施状況

事 業 名	試料数	総項目数	欠測数	測定率(%)
大気汚染常時監視	105, 120	876, 648	42, 318	95

測定項目:二酸化いおう,一酸化窒素,二酸化窒素,窒素酸化物,浮遊粒子状物質, メタン,非メタン炭化水素,総炭化水素,微小粒子状物質,

オキシダント (オゾン), 風向, 風速, 温度湿度, 日射, 放射

(3) 環境基準達成状況

有害大気汚染物質モニタリングにおける,環境基準達成状況は3地点とも全ての物質(ベンゼン,トリクロロエチレン,テトラクロロエチレン,ジクロロメタン)が環境基準以下であった.

大気汚染常時監視については表 $3-3\sim7$ に示すとおりであり、二酸化いおう、二酸化窒素、浮遊粒子状物質、微小粒子状物質については全ての測定局で環境基準を達成していた。光化学オキシダントについては、全ての測定局で環境基準を超える時間があった。

環境測定車による測定結果については表3-8~9のとおりであり、光化学オキシダントについては全ての地点で環境基準を満足していなかった。その他については環境基準を満足していた。

表3-3. 二酸化いおうの年間測定結果

市町村	測定局	有効定数	測定時間	年平均值	1時間値が を超えた時 その書	時間数と	日平 ^以 0.04ppm た日数と そ	こその割	1時間値 の最高値	日平均値 の2%除 外値	日平均値 が0.04ppm を越えた 日が2日 以上連続 した有無	環長期に 環長期に 日本の での での での での での での での での での で
		(日)	(時間)	(ppm)	(時間)	(%)	(日)	(%)	(ppm)	(ppm)	有× 無○	(日)
和歌山市	環衛研	366	8, 731	0.003	0	0	0	0	0.031	0.007	0	0
海南市	海南市役所	366	8,754	0.001	0	0	0	0	0.017	0.003	0	0
海南市	加茂郷	366	8, 753	0.002	0	0	0	0	0.045	0.005	0	0
紀美野町	野上小学校	366	8, 745	0.004	0	0	0	0	0.026	0.01	0	0
紀の川市	粉河中部運動場	362	8, 704	0.003	0	0	0	0	0.016	0.006	0	0
橋本市	伊都総合庁舎	366	8, 752	0.001	0	0	0	0	0.019	0.003	0	0
有田市	初島公民館	363	8,727	0.008	1	0	0	0	0.104	0.019	0	0
湯浅町	耐久高校	366	8,752	0.001	0	0	0	0	0.020	0.003	0	0
御坊市	御坊監視支所	364	8, 759	0.002	0	0	0	0	0.010	0.004	0	0
みなべ町	みなべ町晩稲	364	8, 739	0.002	0	0	0	0	0.016	0.003	0	0
田辺市	田辺会津公園	361	8, 702	0.002	0	0	0	0	0.008	0.004	0	0
新宮市	新宮高校	359	8,654	0.001	0	0	0	0	0.008	0.002	0	0

表 3 - 4. 二酸化窒素の年間測定結果

市町村	測定局	有効 測定 日数	測定時間	年平均値	1時間値の 最高値	1時間値が を超えた時 その書	持間数と	1時間値が 以上0.2pp 時間数とそ	m以下の	日平均 0.06ppi た日数と	nを超え	日平均 0.04pp 0.06ppr 日数とそ	om以上 n以下の	日平均値 の年間 98%値	98%値評価 による日平 均値が 0.06ppmを超 えた日数
		(日)	(時間)	(ppm)	(ppm)	(時間)	(%)	(時間)	(%)	(日)	(%)	(日)	(%)	(ppm)	(日)
和歌山市	環衛研	365	8, 748	0.01	0.057	0	0	0	0	0	0	0	0	0.02	0
海南市	海南市役所	365	8, 751	0.008	0.052	0	0	0	0	0	0	0	0	0.017	0
海南市	加茂郷	366	8, 756	0.006	0.044	0	0	0	0	0	0	0	0	0.014	0
紀の川市	粉河中部運動場	363	8,710	0.006	0.054	0	0	0	0	0	0	0	0	0.011	0
橋本市	伊都総合庁舎	366	8, 748	0.006	0.028	0	0	0	0	0	0	0	0	0.011	0
有田市	初島公民館	366	8, 748	0.008	0.052	0	0	0	0	0	0	0	0	0.019	0
湯浅町	耐久高校	366	8, 758	0.005	0.04	0	0	0	0	0	0	0	0	0.012	0
御坊市	御坊監視支所	365	8, 757	0.005	0.039	0	0	0	0	0	0	0	0	0.011	0
みなべ町	みなべ町晩稲	365	8, 741	0.003	0.03	0	0	0	0	0	0	0	0	0.006	0
田辺市	田辺会津公園	350	8, 604	0.005	0.036	0	0	0	0	0	0	0	0	0.01	0
新宮市	新宮高校	359	8, 634	0.003	0.024	0	0	0	0	0	0	0	0	0.006	0

表3-5. 浮遊粒子状物質の年間測定結果

市町村	測定局	有効 測定 日数	測定時間	年 平均値	1時間 0.20mg/ えた日数 割	m°を超 女とその	日平均 0.10mg/ えた日数 割	/m°を超 女とその	1時間値の 最高値	日平均値 の2%除外 値	日平均値 が0.10mg/m³ を超2日以上連続と 上連続と 有無	環境基準 の評る 値形 の 10mg/m ³ を 日数
		(目)	(時間)	(mg/m^3)	(目)	(%)	(目)	(%)	(mg/m^3)	(mg/m^3)	有× 無〇	(目)
和歌山市	環衛研	363	8,708	0.020	0	0	0	0	0.107	0.049	0	0
海南市	海南市役所	364	8,730	0.024	0	0	1	0.3	0.196	0.067	0	0
海南市	加茂郷	364	8,730	0.028	0	0	0	0	0.181	0.064	0	0
紀美野町	野上小学校	364	8,737	0.013	0	0	0	0	0.101	0.037	0	0
紀の川市	粉河中部運動場	361	8,682	0.018	0	0	0	0	0.114	0.043	0	0
橋本市	伊都総合庁舎	361	8,665	0.016	0	0	0	0	0.094	0.039	0	0
有田市	初島公民館	364	8,723	0.020	0	0	0	0	0.087	0.05	0	0
湯浅町	耐久高校	361	8,701	0.017	0	0	0	0	0.103	0.049	0	0
御坊市	御坊監視支所	363	8,738	0.018	0	0	0	0	0.152	0.055	0	0
みなべ町	みなべ町晩稲	363	8,700	0.019	0	0	0	0	0.113	0.049	0	0
田辺市	田辺会津公園	351	8,612	0.021	1	0	0	0	0. 279	0.052	0	0
新宮市	新宮高校	358	8,668	0.014	0	0	0	0	0.166	0.045	0	0

表3-6. 光化学オキシダントの年間測定結果

市町村	測定局	昼間 測 日数	昼間 測定 時間	昼間の1時 間値の年 平均値	0.06ppr	昼間の1時間値が 0.06ppmを超えた 日数と時間数		0.06ppmを超えた 0.12ppm以上の日		昼間の1時 間値の最 高値	昼間の日 最高1時間 値の年平 均値
		(日)	(時間)	(ppm)	(日)	(時間)	(日)	(時間)	(ppm)	(ppm)	
和歌山市	環衛研	364	5430	0.034	79	455	0	0	0.111	0.048	
海南市	海南市役所	366	5469	0.037	102	547	0	0	0.115	0.051	
海南市	加茂郷	366	5472	0.042	138	879	0	0	0.118	0.057	
有田市	初島公民館	366	5480	0.04	120	693	0	0	0.11	0.054	

表3-7. 微小粒子状物質の年間測定結果

市町村	測定局名	有効 測定 日数	年平均値	日平均値 の年間 98%値	日平均値が3 えた日数と	85µg/m³を超 こその割合
		(目)	$(\mu g/m^3)$	$(\mu g/m^3)$	(日)	(%)
海南市	海南市役所	363	14	34. 9	7	1.9
海南市	加茂郷	364	10.4	29	1	0.3
紀の川市	粉河中部運動場	361	12.1	31. 3	4	1. 1
橋本市	伊都総合庁舎	363	13.4	34. 3	6	1.7
有田市	初島公民館	364	13	32	4	1. 1
御坊市	御坊監視支所	364	12.3	33.6	7	1.9
田辺市	田辺会津公園	351	11.1	31. 7	4	1.1
新宮市	新宮高校	364	9.8	27. 2	0	0

表 3-8. 岩出市荊本(県道泉佐野岩出線沿い) における測定結果(H27.8.11~9.10)

- 澳	定項目	二酸化いおう	二酸化窒素	一酸化炭素	浮遊粒子状物質	光化学オキシダント
項目		(ppm)	(ppm)	(ppm)	(mg/m^3)	(ppm)
期間平	均值	0.001	0.008	0.30	0.025	0.029
1時間値	最高値	0.009	0.029	1.63	0.075	0.092
日平均値	最高値	0.002	0.012	0.47	0.041	0.048
	最低値	0.001	0.004	0.16	0.018	0.010
その他の	の項目	1時間値が	日平均値が	8 時間値が	1時間値が	昼間の時間
		0.1ppmを	0.06ppm を	20ppm を	0.20mg/m³を	の中で1時
		超えた時間数	超えた日数	超えた回数	超えた時間数	値が0.06ppm
						超えた時間数
		0/744時間	0/31日	0 旦	0/743時間	70/495時間
		日平均値が	日平均値が	日平均値が	日平均値が	昼間の時間
		0.04ppm を	0.04ppm を	10ppm を	0.10mg/m³を	の中で1時
		超えた日数	超えた日数	超えた日数	超えた日数	値が0.12ppm
						超えた時間
		0/31日	0/31日	0/31日	0/31日	0/495時間

表 3-9. 海南市大野中における測定結果(H27.9.16~10.16)

澳	定項目	二酸化いおう	二酸化窒素	一酸化炭素	浮遊粒子状物質	光化学オキシダント
項目		(ppm)	(ppm)	(ppm)	(mg/m^3)	(ppm)
期間平	均値	0.001	0.005	0.27	0.028	0.030
1 時間値	最高値	0.009	0.024	0.82	0.115	0.075
日平均値	最高値	0.002	0.009	0.43	0.039	0.042
	最低値	0.001	0.003	0.14	0.022	0.014
その他の	の項目	1時間値が	日平均値が	8 時間値が	1時間値が	昼間の時間帯
		0.1ppmを超	0.06ppm を	20ppm を	0.20mg/m³を	の中で1時間
		えた時間数	超えた日数	超えた回数	超えた時間数	値が0.06ppmを
						超えた時間数
		0/744時間	0/31日	0 回	0/716時間	30/496時間
		日平均値が	日平均値が	日平均値が	日平均値が	昼間の時間帯
		0.04ppm を	0.04ppm を	10ppm を	0.10mg/m³を	の中で1時間
		超えた日数	超えた日数	超えた日数	超えた日数	値が0.12ppmを
						超えた時間数
		0/31日	0/31日	0/31日	0/31日	0/496時間

4) 水質環境グループ

平成27年度に実施した行政検査等の業務実績表は表4-1のとおりである.

依頼者 検 体 数 延検査数 内 環境管理課 工場・事業場の排水基準監視 110 1,400 公共用水域の水質調査 86 1, 108 クロスチェック等精度管理調査 2 1 化学物質環境汚染実熊調査 1 3 苦情等による水質分析 779 77 地下水の汚染範囲確定調査 5 環境生活総務課 温泉経年変化調査(鉱泉分析試験) 5 195 環境放射能水準調査 153 193 排水処理施設等の管理調査 その他 295 21 計 459 3,980

表4-1. 業務実績表

(1) 行政検査等

a) 工場·事業場排水基準監視

水質汚濁防止法及び県公害防止条例に基づく排水基準監視事業としては98工場・事業場に立入調査し、110検体、延1,400項目の水質調査を行った.

分析項目は水質汚濁防止法施行令第2条に定める有害物質(カドミウム及びその化合物、シアン化合物、鉛及びその化合物、六価クロム化合物、砒素及びその化合物、水銀及びアルキル水銀その他の水銀化合物、トリクロロエチレン、テトラクロロエチレン、ジクロロメタン、四塩化炭素、1,2-ジクロロエタン、1,1-ジクロロエチレン、シス-1,2-ジクロロエチレン、1,1,1-トリクロロエタン、1,1,2-トリクロロエタン、1,3-ジクロロプロペン、ベンゼン、ほう素及びその化合物、ふっ素及びその化合物、アンモニア、アンモニウム化合物、亜硝酸化合物及び硝酸化合物)及び同第3条に定める項目(水素イオン濃度(pH)、生物化学的酸素要求量(BOD)、化学的酸素要求量(COD)、浮遊物質量(SS)、ノルマルヘキサン抽出物質含有量、銅含有量、亜鉛含有量、溶解性鉄含有量、溶解性マンガン含有量、クロム含有量及び窒素又はりんの含有量)である.

工場・事業所の排水基準超過項目数は3検体,延3項目で,項目別では,pH2検体,亜鉛含有量1検体であった.

b) 公共用水域の水質調査

県は、水質汚濁防止法に基づき「公共用水域及び地下水の水質測定計画」を作成し、水質環境 基準の達成状況を把握するため、常時監視を実施している。当センターでは、河川におけるBOD 等の環境基準指定水域のうち4水域7地点において、環境基準項目及び要監視項目等の水質調査 及び底質調査を行った。また、水質測定計画以外に、古川6地点の水質調査を併せて行った。

調査した検体数は86検体,項目数は延1,108項目であった.そのうち環境基準点における基準 超過は34検体,延51項目で,項目別では、溶存酸素量(DO)3検体,BOD14検体,SS1検 体,大腸菌群数31検体,ほう素2検体であった.

c) クロスチェック等精度管理調査

県は公共用水域等の水質調査を民間業者に委託しているため、これら分析業者の分析結果の信頼性の確保及び分析精度の向上を目的として、本年度はCOD及び全りんについてクロスチェック分析を実施した。

d) 化学物質環境実態調査

環境省の委託を受けて、県内の公共用水域における化学物質の残留状況の調査(初期・詳細環境調査、モニタリング調査)や分析方法の開発に取り組んだ、残留状況の調査では、県が紀の川河口(紀の川大橋)等で採取(水質、底質)し、分析を行った。また一部の試料については、環境省指定の分析機関に試料を送付した。分析方法の開発では2物質群(2,4-ジクロロ-1-ニトロベンゼン、2,4-ジニトロアニリン)に取り組んだ。

e) 苦情等による水質分析

苦情等により搬入された検体は、河川水等の22検体延174項目及び地下水等の55検体延605項目であった。

f) 地下水の汚染範囲確定調査

県が実施する地下水の常時監視調査において硝酸性窒素及び亜硝酸性窒素が環境基準を上回った井戸があり、汚染状況を調査するために周辺井戸で5検体5項目の水質調査を実施した.

g) 温泉経年変化調査

温泉保護対策事業の一環として実施している経年変化調査を湯峰温泉・川湯温泉及びその周辺地域の5源泉について実施した.その結果前回調査(平成23年度)と比べ、泉温、湧出量及び成分などに特に変化はなかった.

h) 環境放射能測定調查

原子力規制委員会原子力規制庁の委託事業に基づき、定時降水中の全 β 放射能測定、大気浮遊塵、降下物、蛇口水、土壌、各種食品(大根、白菜、茶)のゲルマニウム半導体検出器による核種分析及び空間放射線量率測定を実施し、県内の自然放射能および人工放射能分布状況を調査した。全 β 放射能、放射能核種分析、空間放射線量率の測定結果はそれぞれ表 4-2、表 4-3、表 4-4 のとおりであった。

また、国内外における原子力関係の事象について強化モニタリングを実施し、その結果は表 4 - 5 のとおりであった。本年度は、福島第一原子力発電所事故による影響の追跡調査、及び海外における地下核実験による影響調査を実施した。

(2) その他の事業

a) 排水処理施設等の管理

当センターの排水処理施設の運転管理及び処理水等の最終放流水の水質分析を行った.分析項目は下水道法等に基づき p H, B O D, S S, 窒素含有量, 燐含有量, 揮発性有機化合物, カドミウム, 鉛等であり, 21検体について延295項目の検査を実施した.

表4-2. 定時降水試料中の全β放射能測定結果

(採取場所 和歌山市)

				(1木収	物门 作歌田川/
採取年月	降水量 (mm)		定時採取(定即 対能濃度(Bq/ 最低値		月間降下量 (MBq/km²)
平成27年4月	107.0	12	N. D	0.58	3. 7
5 月	77.0	4	N. D	0.68	2. 3
6 月	119.5	13	N. D	0.64	2.8
7 月	391.5	14	N. D	N. D	N. D
8月	118.0	8	N. D	0.66	9. 1
9月	172.5	13	N. D	N. D	N. D
10月	34.5	3	N. D	0.63	8. 7
11月	142.0	9	N. D	2.35	8. 2
12月	79.0	8	N. D	1.3	1. 3
平成28年1月	75. 5	3	N. D	0.64	4. 4
2月	135.5	5	N. D	0.81	0.41
3月	72.5	5	N. D	1. 1	1. 1
年 間 値	1524.5	97	N. D	2.3	42.7
前年までの過去	3年間の値		N. D	2.0	

注) N.D: 検出限界値未満

表4-3. ゲルマニウム半導体検出器による核種分析測定結果

試料名		採取場所	採取年月	検体数	セシウム137 (¹³⁷ Cs)		前年度までの 過去3年間の値		その他検出された人工	単位
					最低値	最高値	最低値	最高値	放射性核種	
大気浮遊塵		和歌山市	3ヶ月毎	4	N. D	N. D	N. D	N. D	なし	mBq/m³
降下物		和歌山市	毎月	12	N. D	N. D	N. D	0. 79	なし	${ m MBq/km}^2$
陸水(蛇口水)		新宮市	平成27年8月	1	N. D		N. D	N. D	なし	mBq/L
土壤	深さ 0~5cm	新宮市	₩ ₩	1	1. 9		1.8	2.2	なし	Bq/kg乾土
			平成27年8月		63		49	109	なし	$\mathrm{MBq/km}^2$
	深さ 5~20cm	新宮市	₩ ₩	1	N. D		N. D	2.0	なし	Bq/kg乾土
			平成27年8月		N. D		N. D	260	なし	${\rm MBq/km}^2$
野菜	大根	新宮市	亚产00左1日	1	N. D		N. D	N. D	なし	Bq/kg生
	白菜	新宮市	平成28年1月	1	N. D		N. D	N. D	なし	
茶		那智勝浦町	平成27年5月	1	0.49		0. 22	0.86	なし	Bq/kg乾

注) N.D: 検出限界値未満

表 4 一 4. 空間放射線量率測定結果

単位: nGy/h

測定年月	環境衛	生研究セロ市 地	ンター 上15m)		P都振興原 			牟婁振興			年婁振興 官市地上	.局
	最低値	最高値	平均值	最低値	最高値	平均值	最低值	最高値	平均值	最低値	最高値	平均値
平成27年4月	32	54	34	43	63	46	55	80	58	68	82	71
5月	31	52	34	44	80	47	56	72	58	68	86	71
6月	28	49	34	43	71	47	55	78	59	67	85	71
7月	26	83	34	43	91	47	55	94	58	67	87	71
8月	29	45	34	44	80	47	53	74	58	66	87	72
9月	30	46	34	43	65	47	55	101	58	67	89	71
10月	30	51	35	44	76	47	55	73	58	69	84	72
11月	31	55	35	43	73	47	56	82	58	67	93	72
12月	29	44	35	44	74	47	55	69	58	68	85	71
平成28年1月	31	48	35	44	64	47	56	84	58	69	85	72
2月	31	52	34	43	77	46	56	73	58	68	92	71
3月	27	47	34	44	65	46	56	75	59	67	88	71
年 間 値	26	83	34	43	91	47	53	101	58	66	93	71
前年度までの 過去3年間の値	31	63	34	39	102	47	54	111	60	61	119	71

注) 伊都振興局, 西牟婁振興局, 東牟婁振興局のモニタリングポストについては平成24年3月22日より測定開始

表4-5. 強化モニタリングの結果

a) 福島第一原子力発電所事故による影響の追跡調査

(和歌山市における蛇口水)

測定年月	セシウム137 (¹³⁷ Cs) 最低値 最高値		その他検出された 人工放射能核種		
平成27年4~6月	N. D	N. D	なし		
7~9月	N. D	N. D	なし		
10~12月	N. D	N. D	なし		
平成28年1~3月	N. D	N. D	なし		
年間値	N. D	N. D	なし		

注) N.D: 検出限界値未満

b) 海外における地下核実験による影響調査

・降下物 和歌山市における定時降下物

測定年月	検体数	,	7ム137 ⁷ Cs) 最高値	その他検出された 人工放射能核種
平成28年1月6~14日	8	N. D	N. D	なし

・大気浮遊じん 和歌山市における大気浮遊じん

測定年月	検体数		ウム137 ⁷ Cs) 最高値	その他検出された 人工放射能核種
平成28年1月6~14日	8	N. D	N. D	なし

注) N.D: 検出限界値未満

(参考) 放射能の単位

ベクレル (Bq) : 放射能の単位 (国際単位) で1秒間に壊変する原子核の数. かつては、キュ

リー (Ci) という単位が用いられていた. 1 Bg=2.7×10⁻¹¹Ci

グレイ (Gy) : 放射線の強さの単位 (国際単位) で、物質に吸収された放射線のエネルギー

を表したもの. (吸収線量) 1 Gy = 1 J/kg

シーベルト(Sv):シーベルトは実効線量,等価線量等の量を示す単位.

実効線量 :人への影響を評価するにあたって被ばくした部位を考慮したもの.組織

・臓器の等価線量に組織荷重係数を乗じ、全身について合計して算出す

る. 平常時は1Gy=0.8Sv, 緊急時は1Gy=1Svにて換算.

等価線量 :人への影響を評価するにあたって放射線の種類及びエネルギーを考慮し

たもの、組織・臓器の吸収線量に放射線荷重係数を乗じて組織・臓器毎

に算出する.

(3) 依賴検査(鉱泉試験)

平成27年度に実施した鉱泉の依頼検査は13検体(延検査数481)で、その内容については表4-6のとおりであった。

a) 温泉小分析

1検体について鉱泉小分析の試験(13項目)を行ったところ、温泉法の基準値を満たした.

b) 温泉中分析

12検体について鉱泉中分析の試験(39項目)を行ったところ、全ての源泉が温泉に該当した.

表4-6. 依頼検査

区 分	検 査 目 的	検 体 数	延検査数
鉱泉試験	温泉小分析	1	13
	温泉中分析	12	468
	計	13	481

2. 研修指導及び施設見学の実績

平成27年度における研修指導及び施設見学等については、下表のとおりであった。

平成27年度研修指導及び施設見学

来所目的	期日	対 象 者	テーマ・内容等	担当グループ
施設見学及び研修	27. 7. 8	紀の川市(大韓民国からの派遣勤務職員)1名	感染症対策の運営体制について	微生物グループ
体験学習	27. 8. 5	県内の小学5・6年生21 名及びその保護者	夏休み子ども科学教室 ①見てみよう! 体にいい菌・悪い菌 ②どちらが酸っぱい? お酢とレモン	微生物グループ 大気環境グループ
インターン シップ (和歌山県 経営者協 会事業)		近畿大学生物理工学部 学生2名	センターの業務について学 び、体験する。	微生物グループ 衛生グループ 大気環境グループ 水質環境グループ
施設見学	27. 10. 13	和歌山県立盲学校 生徒 5名 引率教員 4名	地域の公衆衛生に関わる施設を見学することにより、公衆衛生の授業で学習している内容の理解を更に深める。	衛生グループ

Ⅲ 研 究 課 題

平成27年度 調查研究成果一覧

題	マダニ類のSFTSウィ	イルス保有状況調査	
研究期間	H27~29 (継続)	担当課(主担当)	微生物グループ (寺杣)

重症熱性血小板減少症候群 (SFTS) は2011年に中国で確認された比較的新しい感染症である. マダニ類に媒介され、県内では2014年に初発例が確認された. 県内におけるSFTSウイルスの浸 淫状況について検討するため、マダニ類の捕獲調査を実施した. 4属10種、計1281匹を採取し、リアルタイムRT-PCR法によりフタトゲチマダニの若虫4匹をプールした 1 検体から、SFTSウイルス遺伝子を検出した.

題	鶏肉におけるリステリアの汚染実態調査			
研究期間	H27~29 (継続)	担当課(主担当)	微生物グループ (河島)	

リステリア属菌は環境中に広く分布する常在菌である. リステリア属菌の1つ、Listeria monocytogenes はヒトに病原性を持ち、汚染された食品を摂取することにより、リステリア症を引き起こす場合がある. そこで、県内を流通する食肉(鶏肉)の汚染状況を把握することを目的として実態調査を行った. 40検体中、20検体からリステリア属菌が検出され、その内の9検体が Listeria monocytogenes と同定された.

題	流入下水を用いた下痢症ウイルスサーベイランスについて				
研究期間	H25~27 (終了)	担当課(主担当)	微生物グループ (下野)		

下水処理場での流入下水を用いたウイルス検索を実施することにより、地域の下痢症ウイルス流行状況の把握を試みた. 平成25年度から27年度にかけて、アデノウイルス (1型, 2型, 3型, 5型, 6型, 7型, 11型, 31型), コクサッキーウイルス B (1型, 3型, 4型, 5型, 6型), エコーウイルス (6型, 11型, 18型, 25型), ライノウイルス, レオウイルス, 及びノロウイルス (GI, GI) が検出された.

題	分析	法の妥当性評	価(動物用医薬品につ	かいて)
研究期間	H27	(終了)	担当課(主担当)	衛生グループ (樋下)

食品中に残留する農薬等に関する試験法の妥当性評価ガイドラインの一部改正に伴い、試験 法の妥当性を確認することが必要となった。今回、動物用医薬品について「ドライアイスを用 いた凍結粉砕法」による試料の均一化法の導入および測定機器の更新を行った。未評価であっ た妥当性の評価を行った結果、鶏肉の食用部、豚肉の食用部、牛肉の食用部、ブリ、エビ、鶏 卵の6畜水産物中の動物用医薬品56成分中、ガイドラインに示されている真度、併行精度、室 内精度の目標値をすべて満たした項目は、31成分であった。

題	危険ドラッグ分析の検討			
研究期間	H27~H29 (継続)	担当課(主担当)	衛生グループ (東嶋)	

危険ドラッグによる県民への危害防止を目的に、今後本県において指定薬物、知事指定薬物の取締りを行う可能性があるため、危険ドラッグ分析について検討した。GC/MS、HPLC、LC/MSを駆使して危険ドラッグ21製品を分析した結果、延べ29化合物について同定することができた。

題	酸性雨共同調査研究				
研究期間	H26~27 (継続)	担当課(主担当)	大気環境グループ (上野)		

全国環境研協議会の全国調査の一環として、酸性雨調査(湿性沈着調査及び乾性沈着調査) を海南市役所屋上にて行った.調査の結果、昨年度の雨水のpH加重平均値は4.8であり、年間 を通して酸性雨であった.また、降水量とpHは因果関係がみられず、雨水中の海塩由来成分は

pH低下に影響を与えなかった.

題	黄砂影響調査		
研究期間	H26~27 (終了)	担当課(主担当)	大気環境グループ(野中)

平成25~26年度の黄砂シーズン(3月~6月初旬)のPM2.5及びPMcについて、PMF等により解析し、PM2.5は6つ、PMcは5つの発生源を起源としていると推定した。また、この時期のPM2.5は、中国大陸由来の二次生成粒子(主に硫酸塩)の影響が大きいことが示唆された。二次生成エアロゾルの主成分である硫酸塩およびアンモニウム塩は和歌山市と海南市で同様の挙動を示した。エアロゾルのトレーサー成分を検討し、レボグルコサンによりバイオマス燃焼起源、コハク酸・ピノン酸により光化学反応、PAHsにより化石燃料由来の調査が可能となった。

題	河川水中の医薬品	河川水中の医薬品等実態調査							
研究期間	H24~27 (終了)	担当課(主担当)	水質環境グループ(梶本)						

河川中における医薬品の汚染実態を調べるため、抗菌剤を中心とした医薬品等 9 物質をLC/M S/MSにより一斉分析する方法を確立し、県内の 8 河川において実態調査を行った。すべての河川で数種類の医薬品等が検出されたが、その濃度は、直ちに人の健康への影響はないと考えられるレベルであった。

題	洪水が底生動物に	洪水が底生動物に及ぼした影響と回復過程の調査							
研究期間	H24~27 (終了)	担当課(主担当)	水質環境グループ(井上)						

平成23年9月の台風12号により、那智川流域(那智勝浦町)で発生した大洪水及び土石流が底生動物に与えた影響とその回復過程を把握するため、底生動物を採取し、同定を行った.平成12年度の結果を基準とすると、上流では回復傾向がみられたが、下流では護岸工事による人為的な河床の攪乱があり、底生動物が生息しにくい環境であると示唆された.工事終了後に再調査を行う計画である.

IV 調 查 研 究

和歌山県内に棲息するマダニ類の SFTS ウイルス保有状況調査

寺杣文男,下野尚悦*,松井由樹

Survey of SFTS virus in ticks inhabiting the environs of Wakayama Prefecture

Fumio Terasoma, Hisayoshi Shimono* and Yuki Matsui

キーワード: SFTS ウイルス, マダニ, 和歌山県

Key Words: SFTS virus, tick, Wakayama Prefecture

はじめに

SFTS(重症熱性血小板減少症候群)は2011年に中国で初めて確認された^{1~3)}ウイルス感染症で、マダニ類により媒介される. 国内では2013年に初めて患者発生が確認され、同年3月には感染症法の4類感染症に指定されて全数把握対象疾病となった.その後2016年3月末までに累計で約170例の患者発生が報告されている⁴⁾.発生地域は主に西日本で、和歌山県内でも2014年に2例、2015年に1例の患者発生が確認された.県内のSFTSウイルス感染リスクについて知見を得るため、マダニ類のSFTSウイルス保有状況調査を行った.

材料と方法

1.マダニ類の採取

マダニの採取は旗振り法により行った. 調査 地域は県北部のかつらぎ町(和泉山脈内,大阪 府との県境付近)と,中部の日高川町,由良町, みなべ町及び田辺市内とした(図1). 採取時 期は2015年4月から11月とし,原則として毎 月1回ずつ,山林・あぜ道等においてマダニ類 の成虫及び若虫を採取した.

2. マダニ種の同定とウイルス遺伝子検出

採取したマダニ類の同定と発育ステージの識別は、実体顕微鏡下の形態観察により行った. 一部はマダニミトコンドリア遺伝子の解析による同定法⁵⁾を併用した. ウイルス遺伝子の検出については、「マダニからの SFTS ウイルス検出マニュアル」(2014年3月、国立感染症研究所)に準じた. 具体的には、まず採取したマダニ類を、成虫については1匹ずつ、若虫については種、採取日、採取地点毎に最大5匹までのプール検体とし、市販の試薬を用いてRNAを抽出後、リアルタイムRT-PCR法によりSFTS ウイルスのNP遺伝子の検出を試みた.

図1. マダニ類の採取地域

結 果

それぞれの調査地域にけるマダニ類の採取結果を表 1~5に示した. 県北部のかつらぎ町では4属6種,計193 匹を採取した. 調査期間を通じてキチマダニが圧倒的優勢種で,全体の約79%を占めた. 県中部の由良町では2属6種,計248 匹を採取した. 5月から8月まではフタトゲチマダニが,それ以外の時期はキチマダニが最も多く採取された. 最終的にはその2種がそれぞれ約35%ずつを占めた. 日高川町では3属9種,計355 匹を採取した. 4月から9月まではフタトゲチマダニが最も多く採取されたが10月以降は激減し,代わりにキチマダニ,オオトゲチマダニ等の割合が増えた. 最

終的にはフタトゲチマダニが全体の約 54%を占めた. みなべ町では日高川町と同じ3属9種,計242 匹を採取した. 4月から7月にかけてフタトゲチマダニが多く採取されたが,全体では8月以降に増加したキチマダニが約 38%と最も多く採取された. 田辺市では4属7種,計243 匹が採取された. 4月から8月にかけてフタトゲチマダニが最も多く採取されたが9月以降減少し,代わってキチマダニの割合が増えた. 最終的にフタトゲチマダニが全体の約54%を占め,キチマダニと合わせて全体の約94%を占めた. 5つの地域で採取したマダニ類は4属10種,計1281 匹で,フタトゲチマダニが最も多く,全体の約40%を占めた.

表1. マダニ類の採取結果(かつらぎ町)

 種	発育期				採耳	[2]				計
↑里 	光月朔	4	5	6	7	8	9	10	11	āl
タカサゴキララマダニ	若虫		2	2	1	1	1			7
<u> </u>	成虫									0
タイワンカクマダニ	若虫									0
<u> </u>	成虫		1							1
キチマダニ	若虫	10	34	20	15	12	1	21	21	134
T/ \	成虫		4	1			2	7	5	19
フタトゲチマダニ	若虫	9	8	3		1				21
73177743—	成虫				1					1
ヤマアラシチマダニ	若虫				1					1
**////	成虫									0
ヤマトマダニ	若虫									0
* * 1 * * * -	成虫		3	4	2					9
計		19	52	30	20	14	4	28	26	193

表2. マダニ類の採取結果(由良町)

 種										
	発育期	採取月								計
1 至)		4	5	6	7	8	9	10	11	p l
タカサゴキララマダニ	若虫	1	1	1	3	1	2	1		10
ダルリコヤフフィダー	成虫									0
キチマダニ	若虫	19	9		1	•	16	9	5	59
イアマグー	成虫	5	7	2				7	8	29
オオトゲチマダニ	若虫									0
771777	成虫							1		11
タカサゴチマダニ	若虫	6	8	1					23	38
<i></i>	成虫		1	3	2			2		8
フタトゲチマダニ	若虫	16	20	12	7	2	7	1		65
73M77	成虫		2	4	9	6	1			22
ヤマアラシチマダニ	若虫	1	1	1			3			6
	成虫	1	2		4	3				10
計		49	51	24	26	12	29	21	36	248

採取したマダニ類のうち, 若虫 960 匹については最大5匹のプール検体とすることにより294 検体となり, 成虫321 匹と合わせて計615 検体とした. これらを用いてSFTS ウイルス遺伝子の検出を試みたところ,5月に日高川町で採取されたフタトゲチマダニの若虫4匹

をプールした 1 検体からウイルス遺伝子が検出された. このリアルタイム RT-PCR 増幅産物について塩基配列 (116bp) を解析したところ, 2014年に県内で発生した患者の臨床材料から検出されたウイルス遺伝子と配列の一致が確認された.

表3. マダニ類の採取結果(日高川町)

種	発育期				採耳	0月				計
/Y里 	九月州	4	5	6	7	8	9	10	11	ĒΙ
タカサゴキララマダニ	若虫	1			1	1			2	5
· ブルッコイフノマブ —	成虫									0
タイワンカクマダニ	若虫									0
プイプンカノマメー	成虫					1	1			2
キチマダニ	若虫	5	1	2		1	5	7	13	34
~ / / / _	成虫	5	1	1				9	5	21
オオトゲチマダニ	若虫	7	4	1	1			9	24	46
	成虫	1					1		2	4
ヒゲナガチマダニ	若虫									0
	成虫		1	2					2	5
タカサゴチマダニ	若虫	6	5	2	1				16	30
<i>7/37</i>	成虫		1		3	1	1			6
フタトゲチマダニ	若虫	27	54	39	18	7	9	3		157
	成虫		2	4	14	10	4			34
ツノチマダニ	若虫						2			2
<i></i>	成虫			1		2				3
ヤマアラシチマダニ	若虫		1							1
ヤマテランテマダー	成虫				3	2				5
計		52	70	52	41	25	23	28	64	355

表4. マダニ類の採取結果(みなべ町)

種	発育期				採耳	0月				計
作里	光月期	4	5	6	7	8	9	10	11	ā
タカサゴキララマダニ	若虫			1	1	1	1	4	4	12
ジカッコヤノノ マ ダー	成虫									0
タイワンカクマダニ	若虫									0
	成虫			1	1	2	2			6
キチマダニ	若虫	2	5	3	1	16	13	3	9	52
	成虫	6	5			1	1	12	15	40
オオトゲチマダニ	若虫				1		1	6	4	12
	成虫								1	1
 ヒゲナガチマダニ	若虫									0
	成虫	3								3
タカサゴチマダニ	若虫	2	8	3					4	17
ブルグコティダー	成虫		2	3	4	1	1	3	1	15
フタトゲチマダニ	若虫	18	8	21	3	5	3	5		63
フダドケティダー	成虫		3	1	6	5		1		16
<i>いノ</i> イラ <i>だ</i> ー	若虫									0
ツノチマダニ	成虫				1					1
ヤマアラシチマダニ	若虫									0
	成虫	1			2	1				4
計		32	31	33	20	32	22	34	38	242

表5. マダニ類の採取結果(田辺市)

 種	発育期				採耳	0月				計
作 里 	光月粉	4	5	6	7	8	9	10	11	āl
タカサゴキララマダニ	若虫					2		1		3
<u> </u>	成虫									0
タイワンカクマダニ	若虫									0
	成虫		1							1
キチマダニ	若虫	4	14	7	2	1	20	9	13	70
	成虫	4	1				1	6	9	21
<u> タカサゴチマダニ</u>	若虫		1						4	5
<i></i>	成虫					1		1	1	3
フタトゲチマダニ	若虫	14	18	37	7	10	18	6		110
73F77	成虫			5	9	12	2			28
レフマニン・エフバー	若虫									0
ヤマアラシチマダニ	成虫					1				1
ヤマトマダニ	若虫									0
	成虫		1							1
計		22	36	49	18	27	41	23	27	243

考 察

2013年にSFTSの国内初発例が確認され、その後、国立感染症研究所等により全国的な調査 6.7.8)が実施されている。結果の詳細については公表されていないところもあるが、SFTS ウイルス保有マダニ類の棲息は調査を行った 26 自治体の内、和歌山県を含む 23 道府県で確認され、SFTS ウイルスの保有が認められたマダニ類としてタカサゴキララマダニ、フタトゲチマダニ、キチマダニ、オオトゲチマダニ、及びヒゲナガチマダニが挙げられている。これらのマダニ類はいずれも今回の調査でも採取されており、また過去の調査で県内の他の地域でも棲息が確認されている 9,10,11)ことから、ウイルスを媒介し得る種として注意が必要である。

フタトゲチマダニについては、日高川町で採取された若虫から SFTS ウイルス遺伝子が検出されたことから媒介への関与が疑われた。今回の採取結果をみると、フタトゲチマダニは県内に棲息するマダニ類の優勢種であり、6月から7月にかけて特に多く採取されている。2014年・2015年に県内で確認された3例の患者の発症時期が同じく6月と7月であることも、フタトゲチマダニの関与を示唆していると思われた.

また、フタトゲチマダニ以外のマダニ類も含めウイルス遺伝子が検出されたのは1検体のみであったことから、県内におけるマダニ類のSFTSウイルス保有頻度は低いと考えられた.

まとめ

今のところSFTSには確立された治療法がなく、発症した場合には対症療法が中心となる. 従って、まずは感染しないことを心がけることが大切である.今後も調査を継続し、県内におけるウイルス保有マダニの分布状況を明らかにしたい.

(埔)

- 1) Xue-Jie Yu et al : Fever with Thrombocytopenia Associated with a Novel Bunyavirus in China, N Engl J Med, 364, 1523—1532, 2011
- 2)Li S et al.: Sporadic case infected by severe fever with thrombocytopenia syndrome bunyavirus in a non-epidemic region of China, BioScience Trends., 5(6), 273—276, 2011
- 3) Zhang YZ et al.: The Ecology, Genetic Diversity, and Phylogeny of Huaiyangshan

Virus in China, J Virol., 86, 2864—2868, 2012

- 4)国内の発生動向調査よりみられる SFTS の 疫学情報,病原微生物検出情報 月報, 37, 41—42,2016
- 5)Ai Takano et al.: Construction of a DNA database for ticks collected in Japan: application of molecular identification based on the mitochondrial 16S rDNA gene. Medical Entomology and Zoology, 65(1), 13—21, 2014
- 6)森川茂,他:重症熱性血小板減少症候群 (SFTS) ウイルスの国内分布調査結果(第一報),IASR Vol. 34 p. 303-304: 2013 年 10 月号 7)森川茂,他:重症熱性血小板減少症候群 (SFTS) ウイルスの国内分布調査結果(第二報),IASR Vol. 35 p. 75-76: 2014 年 3 月号 8)重症熱性血小板減少症候群(SFTS),2016 年 2 月現在(IASR Vol. 37 p. 39-40: 2016 年 3 月号)
- 9) 寺杣文男,他:和歌山県内に生息するマダニ類の日本紅斑熱リケッチア保有状況調査(2012年度),和歌山県環境衛生研究センター年報,59,37—39,2013
- 10) 寺杣文男,他:和歌山県内のマダニ類の日本紅斑熱リケッチア保有状況調査,厚生労働科学研究費補助金 新型インフルエンザ等新興・再興感染症研究事業―ダニ媒介性細菌感染症の診断・治療体制構築とその基盤となる技術・情報の体系化に関する研究―平成25年度総括・分担研究報告書,149~153,2014
- 11) 寺杣文男,他:和歌山県内のマダニ類の日本紅斑熱リケッチア保有状況調査,厚生労働科学研究費補助金 新型インフルエンザ等新興・再興感染症研究事業―ダニ媒介性細菌感染症の診断・治療体制構築とその基盤となる技術・情報の体系化に関する研究―平成 26 年度総括・分担研究報告書,183~187,2015

和歌山県における 2015/2016 シーズンのインフルエンザ流行状況について

松井由樹, 下野尚悦*, 寺杣文男

Epidemic of influenza in Wakayama Prefecture during 2015/2016 season

Yuki Matsui, Hisayoshi Shimono and Fumio Terasoma

キーワード:インフルエンザ,和歌山県,2015/2016シーズン Key Word: influenza, Wakayama Prefecture,2015/2016 season

【はじめに】

インフルエンザは、インフルエンザウイルスによる呼吸器感染症で伝播力が強く冬季に大流行を起こしやすい.インフルエンザウイルスは、オルソミクソウイルス科に属し、A・B・C型の3つの属からなる.流行的な広がりを見せるのはA型とB型であり、現在、A(H1N1)pdm09型、A(H3)型、B型(山形系統・ビクトリア系統)の4種類が季節性インフルエンザとされている.インフルエンザの流行規模と流行時期はシーズンや地域によって異なるため、流行するウイルスのタイプや性状を知ることは重要である.2015/2016シーズンの県内における流行状況について報告する.

【材料と方法】

1. 患者及び集団インフルエンザ様疾患発生状況

県内の患者発生状況については、2011 年第 36 週~2016 年第 22 週にかけて感染症発生動向調査事業による県内インフルエンザ定点医療機関50か所からの報告を集計した.

また、保育所・幼稚園・小・中・高等学校等におけるインフルエンザ集団発生については厚生労働省の「インフルエンザ施設別発生状況」調査による2011年10月から2016年5月の結果を集計した.

2. ウイルスの分離・同定

2015 年 9 月から翌年 3 月にかけて県内の医療機関でインフルエンザ様疾患患者から採取された咽頭拭い液、計 175 検体を用いた. インフルエンザウイルスの検出は病原体検出マニュアル「インフルエンザ」(国立感染症研究所)に準じ,MDCK 細胞を用いた細胞培養法により行った. 細胞変性効果が認められたものの内,8 HA/50 μ 以上の赤血球凝集活性が認められた株については,国立感染症研究所から分与された「2015/2016 シーズンインフルエンザウイルス(A/H1pdm09 型, A/H3 型, B型)同定用キット」を用いた赤血球凝集抑制試験により同定した. 十分な赤血球凝集活性が認められない株については,同マニュアルに記載されたリアルタイムRT-PCR 法により同定した.

3. 抗インフルエンザ薬剤耐性株の検出

A(H1)pdm09 型分離株の内,2015/2016 シーズンインフルエンザウイルス(A/H1pdm09 型,A/H3型,B型)同定用キット」にて同定した42株について国立感染症研究所で策定された「A/H1N1pdm09 H275Y耐性株検出法実験プロトコールVer.2」に従い,リアルタイムRT-PCR法により耐性変異マーカーH275Yの有無について調べた.

4. インフルエンザウイルスの遺伝子解析

分離株から採取週毎2株を上限として選んだ. A(H1N1)pdm09型:20株、A(H3)型:10株、B型(山形系統):10株、B型(ビクトリア系統):10株についてRT-PCR法によりHA遺伝子のHA1領域を増幅後、ダイレクトシークエンス法にて塩基配列を決定し、Neighbor-Joining法により系統樹解析を行った.

【結果】

1. インフルエンザ流行状況

過去5シーズンの感染症発生動向調査事業による定点あたり患者報告数の推移を図1に示した.2016年は、第1週に流行の目安となる定点あたり患者報告数が初めて1.0人を超えた.定点あたり患者報告数のピークは、2016年第8週の34.1人であった.過去5シーズンで比べると流行時期は最も遅く定点あたり患者報告数のピーク時期には約4週のずれがみられた.

患者報告数は第10週以後、徐々に減少し2016 年4月第17週に定点あたり1.0人を下回った. 流行期間中の定点あたり患者報告数の累積は約 321人で過去5シーズンでは,2011/2012シーズンに次いで2番目に多かった.

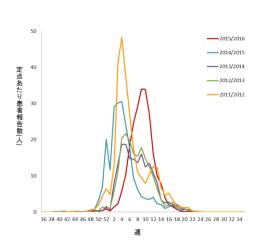


図1. 県内のインフルエンザ流行 (2011/2012 シーズン~2015/2016 シーズン)

小・中・高等学校等におけるインフルエンザ 集団発生の初発は2015年11月10日(第46週) に海南市の小学校でみられた。シーズン中の発 生数(校数)累計は659校であり過去5シーズ ンでは2011/2012シーズンに次いで2番目に多 かった.また,発生数のピークは2016年第8週, 第9週の122校で,感染症発生動向調査事業に よる患者報告数のピーク時期と一致した.(図2)

2. インフルエンザウイルスの分離状況

検体採取週ごとのインフルエンザウイルス分離状況を県内の定点あたり患者報告数と共に図3に示した.また,全分離株の型別(亜型)比を図4に示した.検査した175検体中147検体(84%)からインフルエンザウイルスが分離された.分離された亜型の内訳は,A(H1)pdm09型72株(49%),B型(山形系統)33株(22%),B型(ビクトリア系統)26株(18%),A(H3)型16株(11%)となった.

3. A(H1)pdm09型ウイルスのH275Y耐性変異インフルエンザウイルス A(H1)pdm09型分離株42株についてオセルタミビル耐性マーカーの有無を調べた結果,H275Y変異株は認められなかった.

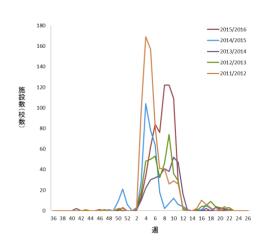


図2. 県内のインフルエンザ集団発生 (2011/2012 シーズン~2015/2016 シーズン)

4. 県内分離ウイルス株の遺伝子解析

1) A(H1)pdm09型ウイルス

A(H1) pdm09 ウイルス分離株の HA1 領域の遺伝子系統樹解析の結果を図 5 に示す. 解析した 20 株全て, HA タンパク質に D97N・S185T・K283E・K163Q・A256T のアミノ酸置換を持つクレード 6B であった. A/WAKAYAMA/82/2015 株については他の解析株と同様にクレード 6B に分類されたが,株間の相同性が約 97%と低かった. その他の株間の相同性は約 99~100%であった.

2) A(H3)型 ウイルス

A(H3)型ウイルス分離株の HA1 領域の遺伝子系統樹解析の結果を図6に示す. 10株全て, HA タンパク質にL3I, N144S, F159Y, Q311H, K160Tのアミノ酸置換を持つサブクレード3C. 2a であった.

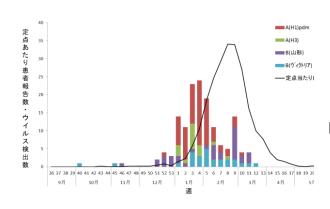


図3. 2015/2016 シーズンの県内インフルエン ザ流行状況

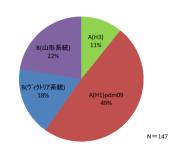


図 4. インフルエンザウイルス分離株の内訳 (2015/2016 シーズン)

3) B型(山形系統) ウイルス

B型(山形系統) ウイルス分離株の HA1 領域 の遺伝子系統樹解析の結果を図7に示す. 解析 した10株全て, HA タンパク質に S150I・N165Y・ N202S・S229D のアミノ酸置換を持つクレード3 であった.

4) B型 (ビクトリア系統) ウイルス

B型(ビクトリア系統) ウイルス分離株の HA1 領域の遺伝子系統樹解析の結果を図8に示す. 解析した 10 株はいずれも、HA タンパク質に I37T・N75K・N165K・S172P のアミノ酸置換を持 つクレード 1A であった.

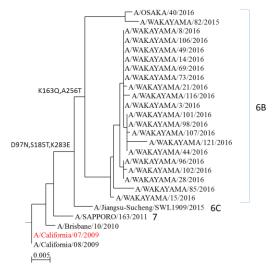


図 5 . AH1pdm09 型分離株の HA 遺伝子(HA1 領域) 系統樹

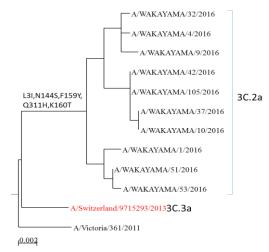


図 6 . A(H3)型分離株の HA 遺伝子(HA1 領域) 系統樹

【考察】

2015/2016 シーズンの県内の流行は、年明け第1週から本格的に始まった。流行ピーク時期を過去5シーズンで比較すると約4週遅かった。流行規模については、感染症発生動向調査による定点あたり患者累積報告数及び集団インフルエンザ様疾患発生数共に過去5シーズン中2番目に多かった。

インフルエンザウイルス分離株の亜型別推移において、2015/2016シーズンは A(H1)pdm09型が最も多く主流であった。前シーズンは A(H3)型が主流であり、A(H1)pdm09型が主流となったのは2013/2014シーズン以来2シーズンぶりであった1)。全国から分離された亜型の内訳は、A(H1)pdm09型:50%、B型(山形系統):22%、B型(ビクトリア系統)18%、A(H3)型:8%、B型(系統不明)2%であり2)、県内の内訳と概ね同じ割合であった。また、ウイルスの検出状況から概ねシーズンを通しての混合流行と考えられた。当センターで解析したA(H1)pdm09型においてH275Y耐性株は見られなかったことから県内での蔓延は無かったと考えられる。

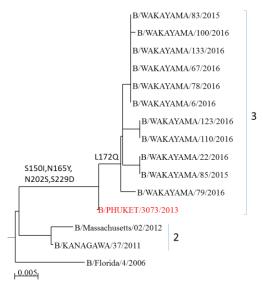


図7. B型(山形系統)分離株のHA遺伝子 (HA1領域)系統樹

国立感染症研究所による国内および海外での分離株の解析(HA 遺伝子系統樹)では,A(H1) pdm09型ウイルスはクレード 6B,A(H3)型ウイルスは3C2aに属しており,B型(山形系統)ウイルスは2015/2016シーズンのワクチン株B/PHUKET/3073/2013を含むクレード3,B型(ビクトリア系統)ウイルスでは2015/2016シーズンのワクチン株<math>B/Texas/02/2013を含むクレード1Aに属していた20.今シーズン県内で分離されたウイルス株と同じグループであった.

今後、感染症の予防及び感染症の患者に対する医療に関する法律の一部改正(施行日:平成28年4月1日)に伴い季節性インフルエンザの非流行期における検体の搬入も増えることが予測され、流行期・非流行期を通しての遺伝子解析を行っていきたい.

【まとめ】

和歌山県における 2015/2016 シーズンのインフルエンザの流行は、過去 5 シーズンの中では2番目の規模であった.流行の主流は、A(H1N1) pdm09型であったが A(H3)型、B型(山形系統・ビクトリア系統)のウイルスの混合流行がみられた.

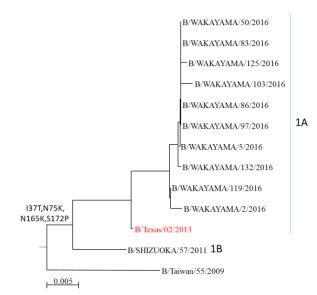


図8.B型(ビクトリア系統)分離株のHA遺伝子 (HA1 領域)系統樹

【謝辞】

インフルエンザウイルスの遺伝子解析にあた り貴重なご意見をいただきました国立感染症研 究所インフルエンザウイルス研究センターの藤 崎誠一郎先生に深謝致します.また,検体採取 等にご協力いただきました医療機関の皆様に感 謝申し上げます.

【文献】

- 1) 寺杣文男,他:和歌山県における2013/2014 シーズンのインフルエンザ流行について、和 歌山県環境衛生研究センター年報, 60,39-43,2014
- 2) 国立感染症研究所: 今冬のインフルエンザ について (2015/2016 シーズン) http://www.nih.go.jp/niid/images/idsc/di sease/influ/fludoco1516.pdf

和歌山県における PM。5の傾向

桶谷嘉一, 野中卓, 上野智子, 大谷一夫

Trend of PM_{2.5} in Wakayama Prefecture

Yoshikazu Oketani, Suguru Nonaka, Tomoko Ueno and Kazuo Otani

キーワード PM。5, 質量濃度,

Key Words $PM_{2.5}$, Mass Concentration

1. はじめに

微小粒子状物質 $(PM_{2.5})$ の環境基準 (日平均値 $35~\mu~g/m^3$,年平均値 $15~\mu~g/m^3$)が 2009 年 9 月 に設定されたことを受け,本県においても 2012 年度より常時監視測定 (質量濃度) 体制を順次整備し,2016 年 3 月現在では県有局として 8 局で測定を行っている。今回は,県有局の常時監視結果を解析し,そこから考えられた本県における $PM_{2.5}$ の傾向について報告する.

2. 測定体制

各測定局の県内位置, 常時監視測定機の機種,

導入時期を図1に示す.全て屋外型の機器を設置 した.

3. 結果と考察

1) 常時監視結果解析

2015 年度までの環境基準達成状況を表 1 に示す. 2015 年度は 8 局全てにおいて環境基準を達成したが、2012~2014 年度は海南で年間 98%値が $35 \mu \, \text{g/m}^3$ を超過した. そこで、海南の各年度の質量濃度範囲別 ($\leq 15 \mu \, \text{g/m}^3$ 、 $\leq 25 \mu \, \text{g/m}^3$ 、 $\leq 35 \mu \, \text{g/m}^3$ 、 $\leq 45 \mu \, \text{g/m}^3$ 、 $\leq 55 \mu \, \text{g/m}^3$ 、 $> 55 \mu \, \text{g/m}^3$)100%積み上げグラフを作成し、各濃度



図1. 和歌山県の PM25測定体制 (カッコ内は本文中の表記を示す)

範囲の出現日数を確認した(図 2,有効測定日数 2012 年度:364 日,2013 年度:363 日,2014 年度:362 日,2015 年度:362 日)。 いずれの年度 においても, $15\mu g/m^3$ 以下の日数が最も多く,95% 以上が $35\mu g/m^3$ 以下であった. 日平均値が $35\mu g/m^3$ を超過した日数は 2013 年度の 15 日が最 多で,2012 年度 9 日,2014 年度 8 日,2015 年度 7 日であった. 4 年分のデータのみであるが,海南において 2013 年度は特異的に超過日数が多かった可能性が考えられた.

また,各測定局の年度ごとの測定結果について, 日平均値を降順に並び替え,順位に対してプロットし近似曲線を作成したところ,対数曲線 (y=aLn(x)+b y:日平均計算値,x:順位,a<0, b>0) と良い一致を示した(図3:2015年度海南結果,表2).3年以上測定を継続している海南, 田辺について,近似曲線から得られた決定係数

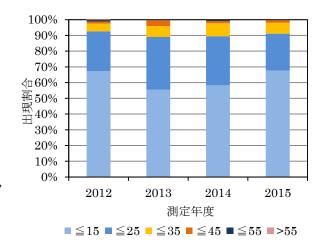


図2. 海南における濃度出現割合

表1. 和歌山県の PM₂₅環境基準達成状況

年平均値/年間 98%値 (μ g/m³)

測定局	2012	2013	2014	2015
海南	14. 2 / 36. 1	15.0 / 38.1	14.9 / 35.4	14.0 / 34.9
田辺	- / -	13.3 / 34.8	12.0 / 31.6	11.1 / 31.7
伊都	- / -	(14.7 / <mark>38.1</mark>)	14.3 / 33.2	13.4 / 34.3
初島	- / -	- / -	(10.7 / 22.2)	13.0 / 32.0
加茂郷	- / -	- / -	(10.2 / 23.6)	10.4 / 29.0
粉河	- / -	- / -	(13.8 / 27.9)	12.1 / 31.3
御坊	- / -	- / -	(11.6 / 26.0)	12.3 / 33.6
新宮	- / -	- / -	(9.2 / 20.6)	9.8 / 27.2

カッコ内は年度途中からの測定のため参考値

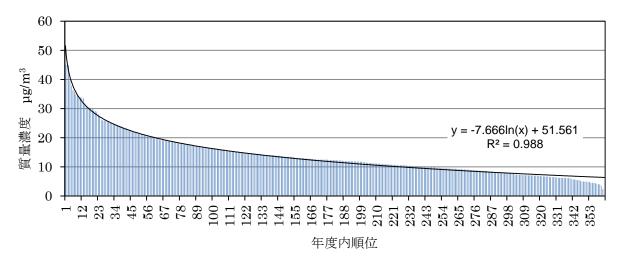


図3.2015年度海南における測定結果の減衰傾向

(R²)と年平均値を比較すると,年平均値が上昇するに従って決定係数が減少する傾向が見られた(図4).同一測定局においても年度によ

って近似曲線から得られた対数項の係数,切片,決定係数は異なるため、より多くのデータを蓄積することで、各測定結果の $PM_{2.5}$ トレンドを特徴付けられる可能性があると考えた.

加えて、上記 2 局について日平均値の出現傾向を q-q プロットにより確認したところ(図 5)、正規分布に従う(直線上に並ぶ)のは中位から下位の一部区間のみであり、高濃度時及び低濃度時はこれから外れていたことが分かった。直線区間を地域で定常的に生成されている $PM_{2.5}$ 濃度と仮定すると、低濃度側は気候等の影響を受け、高濃度側は地域にとってイレギュラーな PM2.5 生成があったと考えられた。

2) 各測定局の類似性

8局体制になった 2014 年 9 月 19 日から 2016 年 3 月 31 日までの測定結果について,各測定局 間の類似性を評価した.各測定局の日平均値変動 を図 6 に示す.各測定局間の日平均値の変動は類

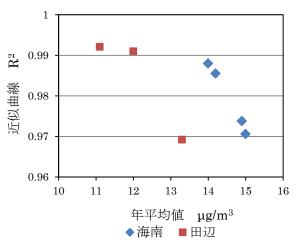


図4. 年平均値と近似曲線R²の関係

表 2. 近似曲線の各パラメータ

(Y = a Ln(x))	+ b	a /	b	$/ R^2$
---------------	-----	-----	---	---------

測定局	2012	2013	2014	2015
海南	-7.9 / 53 / 0.99	-8.8 / 58 / 0.97	-7.9 / 53 / 0.97	-7.7 / 52 / 0.99
田辺	_	-7.6 / 51 / 0.97	-7.2 / 47 / 0.99	-6.7 / 44 / 0.99
伊都	_	(-8.8 / 54 / 0.98)	-7.2 / 49 / 0.97	-7.6 / 51 / 0.98
初島	_	_	(-5.7 / 38 / 0.97)	-6.7 / 46 / 0.99
加茂郷	_	_	(-5.2 / 32 / 0.96)	-6.5 / 42 / 0.99
粉河	_	_	(-4.9 / 32 / 0.93)	-7.0 / 47 / 0.99
御坊	_	-	(-5.4 / 35 / 0.98)	-7.1 / 47 / 0.99
新宮	_	_	(-4.7 / 30 / 0.97)	-6.2 / 40 / 0.99

カッコ内は年度途中からの測定のため参考値

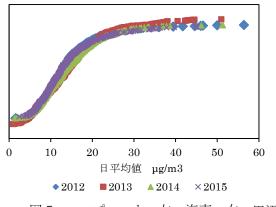
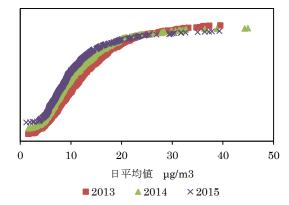



図 5. q-q プロット 左:海南 右:田辺

似しており、その相関係数を算出すると、いずれの局間においても相関があった(表3,最小値は新宮高校-海南測定局の0.76).

また,高濃度を示す際にはほぼ全ての測定局で 上昇していたため,広域的な影響を受けて変動し たと考えられた.しかしながら,測定局間距離が

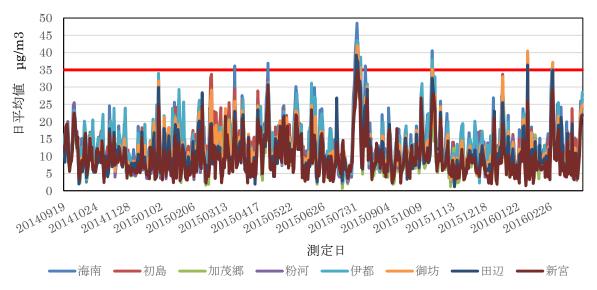


図6. 各測定局の日平均値変動 (2014年9月19日~2016年3月31日)

表3. 各測定局間の日平均値変動相関係数 (2014年9月19日~2016年3月31日)

	初島	加茂郷	粉河	伊都	御坊	田辺	新宮
海南	0.90	0. 93	0.88	0.87	0.90	0.85	0. 76
初島	_	0. 96	0.87	0.86	0.95	0.89	0.80
加茂郷	_	_	0. 93	0. 91	0.96	0. 91	0.84
粉河	_	_	_	0. 96	0.90	0.87	0.84
伊都	_	_	_	_	0.89	0.85	0.83
御坊	_	_	_	_	_	0. 95	0. 87
田辺	_	_	_	_	_	_	0. 91

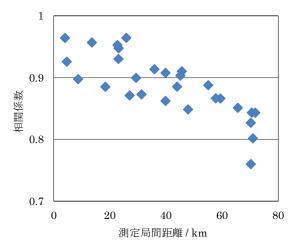


図7. 測定局間距離と局間相関係数の関係

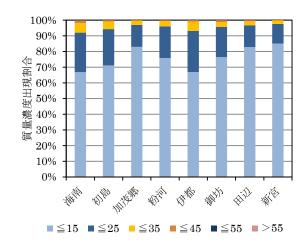


図8. 各測定局の質量濃度出現割合

長くなるにつれて相関係数が下がる傾向があったこと(図7), 濃度範囲別100%積み上げグラフでは各測定局で出現傾向が異なっていたこと(図8)から、細かい部分で地域的なPM_{2.5}生成も濃度変動に影響したことを確認した.

3) 日平均値の年内変動

年内変動の有無を自己相関係数¹⁾により確認した.対象測定局は複数年度の測定結果がある海南,田辺,伊都の3局とした(図9).自己相関係数は低い数値であったが,海南および田辺においては,約360日ごとの周期変動を確認できた.

一方, 伊都については周期的な変動を確認できなかった. 海南市役所, 田辺市会津公園は海沿いに局舎があるため, 越境汚染等の季節的なイベントの影響があったが, 内陸部にある伊都総合庁舎ではその影響が小さくなったと考えられた.

4) 参考値(1時間値)と風向風速の関連

参考値として収集している $PM_{2.5}$ の 1 時間値と 各測定局に設置した風向風速計の風向データと の関連性を確認した. 濃度ごと ($\leq 15\,\mu$ g/m³, $\leq 35\,\mu$ g/m³, $>35\,\mu$ g/m³, ≤ 4 の風向頻度 (図 10) から、紀伊半島西側の測定局では>35 の頻度が西

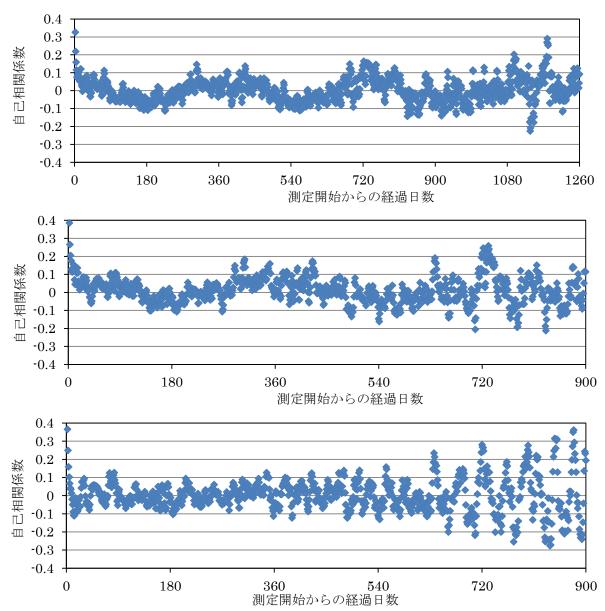
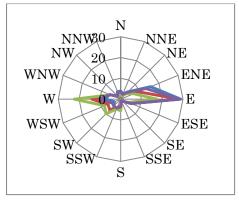
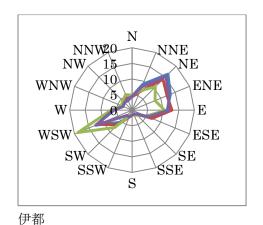


図9. 各測定局の自己相関係数 上段)海南,中段)田辺,下段)伊都

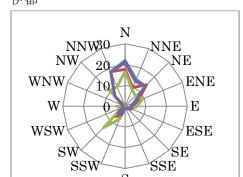
寄りの風の割合が大きくなる傾向があった.対して,紀伊半島東側に位置する新宮においては東寄りの割合が大きくなった.紀伊半島西側の測定局では,大規模発生源が海岸沿いに多いことや,西側からの越境汚染が影響したと考えられた.一方で新宮については,移流の影響は少ないが東側の国道を通過する自動車の影響を受けた可能性が考えられた.

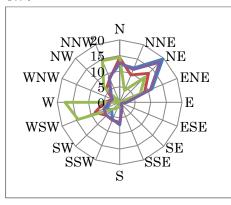

4. まとめ

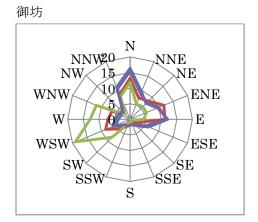

2016 年3月末までの測定結果を解析した結果から、以下の傾向が見られた.

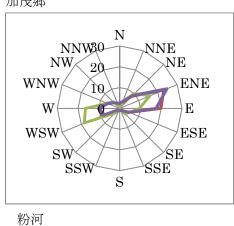
- 1)環境基準の達成状況については、年平均値を満足するが年間 98%で超過する傾向があった.
- 2) 複数年において、年間 98%値が $35 \mu \text{ g/m}^3$ を超過した海南においては、95%以上の日数で $35 \mu \text{ g/m}^3$ を下回った.
- 3)各測定局,各年度の測定結果を降順に並べる と,対数局線に近い減少傾向が見られた.また, 海南および田辺の測定結果は一部の濃度区間の みが正規分布に従った.
- 4)各測定局の日変動には相関があったが、局間距離が長くなるに従って減少する傾向にあった.
- 5)海南,田辺の測定結果においては約1年の周期変動を確認した.

参考文献


1)桶谷嘉一,他:風力発電設備周辺における風車音調査,和歌山県環境衛生研究センター年報,59,59-64,2013




海南



初島

加茂郷

田辺 NNW30 NNE NE NW/ WNW ENE 10 \mathbf{E} W WSW ESE SE SW SSE SSW \mathbf{S}

図 10. 各測定局の 1 時間値濃度別風配図

______≤15, ______≤35, _____>35, ______全体

新宮

河川中の医薬品等汚染実態調査について

梶本かおり、奥本木の実*、樋下勝彦、猿棒康量

Survey of pharmaceuticals and personal care products (PPCPs) in river water

Kaori Kajimoto, Konomi Okumoto, Katsuhiko Hinoshita and Yasukazu Sarubo

キーワード:医薬品,和歌山県

Key Words: PPCPs, Wakayama Prefecture

[はじめに]

近年、河川水中から医薬品やパーソナルケア製品起源の化学物質(PPCPs)が検出され、新たな環境汚染物質として注目されている. PPCPs は多種多様の物質が使用され、また、何らかの生理活用を持つように設計されているものが多く、人の健康や生態系への影響が懸念される.特に、抗菌剤は、薬剤耐性菌の発生を引き起こすリスクがあるため、環境中への放出について注目すべき物質である. 1)-5)

そこで、和歌山県内の汚染状況を把握するために抗菌剤を中心とした9種類のPPCPsについて、一斉分析によるスクリーニング調査を行ったので報告する.

[調 査 方 法]

1. 調查対象物質

一般の市販薬等で、標準品が入手可能である他、使用頻度等を考慮して、水環境において検出事例のある医薬品から、表1に示す9種類の医薬品等を選定した. 1)-4)

2. 調査地点

和歌山県内の一級河川 2 河川, 二級河川のうち6 河川について, 公共用水域調査における環境基準点を調査地点とした. (図1)

3. 調査時期

第 I 期 (平成 25 年 2 月~平成 26 年 3 月) は,紀の川下流で 9 回 (月 1 回程度の通年調査),紀の川上流で 1 回,熊野川で 2 回,有田川,日高川,富田川,日置川で 1 回の採水を行った. また,第 II 期 (平成 27 年 3 月~平成 28 年 2 月) は,全 8 河川 (紀の川は下流のみ) で,季節ごとに年 4 回の採水を行った.

表1. 調査対象物質の選定

対象物質	用途	選択理由			
ジフェンヒドラミン	抗アレルギー薬				
diphenhydramine	抗アレルヤー条	季節との相関を調査するため			
アセトアミノフェン	解熱鎮痛薬	学則との作用を調査するだめ			
Acetaminophen	胜於與佣采				
カルバマゼピン	抗てんかん薬	ぜった副佐田が起告されている			
carbamazepine	抗しんがん楽	様々な副作用が報告されている			
テトラサイクリン					
tetracycline					
オキシテトラサイクリン					
oxytetracycline					
スルファジアジン	抗菌剤	薬剤耐性菌発現リスクがあるため			
sulfadiazine	机图剂	条用側住困光現リヘンかめるため			
スルファメトキサゾール					
Sulfamethoxazole					
スルファピリジン					
sulfapyridine					
カフェイン	その他				
caffeine	ての他	人口との相関を見るため			
·					

図1. 調査地点

[分析方法]

1. 装置と測定条件

LC は, Agilent 社製 1100 を使用し, カラムは, SUPELCO Ascentis Express C8 (10 cm×2.1 mm, 2.7 μ m)を用いた. 試料注入量は 5 μ L, カラム温度は 40 °C, 移動相は 0.1 %ギ酸水溶液 (A) と 0.1 %ギ酸含有アセトニトリル (B) のグラジェント溶出 (表 2) とし, 流速は 0.2 mL/min とした.

MS/MS は、AB SCIEX 社製 API3200 を使用し、表 3 、表 4 の 条 件 で Selected reaction monitoring (SRM) 測定により定量した.

表2. LC のグラジェント条件

time(min)	移動相A(%)	移動相B(%)
0	99	1
2	99	1
5	95	5
18	5	95
25	5	95
28	99	1
42	99	1

表 3. MS/MS の条件①

イオン化法	:	ESI(Positive)	
イオンソース	:	Curtain Gas	20 psi
		Collision Gas	3
		Ion Source Gas 1	80 psi
		Ion Source Gas 2	80 psi
		Ion Sapray Voltage	5000 V
		Temperature	650 ℃

表 4. MS/MS の条件②

対象物質	測定	質	量数	Declustering Potential (V)	Collision Energy (V)
ジフェンヒドラミン	256.2	>	167.1	16	20
シノエン Lト ノミン	256.2	>	152.3	16	51
アセトアミノフェン	152.1	>	110.0	35	23
7 617 47 712	152.1	>	65.1	35	41
カルバマゼピン	237.2	>	194.2	36	27
אווווווווווווווווווווווווווווווווווווו	237.2	>	179.0	36	60
テトラサイクリン	445.5	>	410.3	29	30
71794992	445.5	>	154.2	29	38
オキシテトラサイクリン	461.5	>	426.2	30	25
オモンノドンサインサン	461.5	>	201.2	30	50
スルファジアジン	251.1	>	92.1	31	35
X10212122	251.1	>	156.1	31	20
スルファメトキサゾール	254.1	>	92.1	33	36
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	254.1	>	156.0	33	21
スルファピリジン	250.1	>	156.1	33	21
スルンノしりンン	250.1	>	92.1	33	37
カフェイン	195.2	>	138.0	46	27
カフエイン	195.2	>	110.0	46	29

2. 固相抽出による試料の前処理

あらかじめアセトン 10 mL,メタノール 5 mL 及び 0.04 M クエン酸水溶液 (A 法) 又は精製水 (B 法) 8 mL によりコンディショニングした 0ASIS HLB Plus (Waters 製) に試料水を 10 mL/min で 50 分間通水した (500 倍濃縮). その後, 0.04 M ク エン酸水溶液 (A 法) 又は精製水 (B 法) 8 mL で洗 浄,通気脱水を行い,メタノール 8 mL により溶 出,窒素吹き付けにより濃縮乾固し,精製水で 1 mL に定容した. 定量は絶対検量線法により 行った.

なお、第 I 期は、コンディショニングの方法により化合物の回収率に差があったため、A法、B法と場合分けを行い、第 II 期は、通水方式を加圧方式から減圧方式に変更することにより、回収率のばらつきを抑え、B法のみで操作を行った.

また,ガラスバイアル中ではサンプルの保存性が悪いため,PPバイアルを用いた.

[結果と考察]

1. IDL 及び IQL の確認と添加回収試験

装置検出下限 (IDL) 及び装置定量下限値 (IQL) は, 「化学物質環境実態調査の手引き」 ⁶⁾ を参考に算出し, 本調査では, 便宜上 IQL を定量下限値とした. また, 精製水で添加回収試験を行った結果を表 5 に示した. 夾雑物の影響等は考慮

していないが,平均回収率は 50~97 %で,検出 の有無の確認には十分であると判断した.

2. 調査結果

表6,7及び8に第 I 期,第 II 期の結果を示した.第 I 期では,紀の川で実施した通年調査において,5種類のPPCPsが ng/L オーダーで検出された.年間を通してカフェインが高濃度で検出された.その他,ジフェンヒドラミン,アセトアミノフェン,スルファメトキサゾール及びスルファピリジンが検出された.冬を中心に検出される傾向があったが,ジフェンヒドラミンは,夏にも検出された.カルバマゼピン,テトラサイクリン,オキシテトラサイクリン及びス

ルファジアジンは検出されなかった. 紀の川以外の5河川についは、日置川以外でカフェイン、熊野川でジフェンヒドラミンの検出があった. 第II 期では、すべての河川で、カフェインが検出され、南部川及び左会津川では、年間を通して比較的高濃度であった. ジフェンヒドラミンが夏に検出され、カフェインに次いで検出頻度が高かった. その他の物質については、冬に検出される傾向があり、全体として、第I期の紀の川通年調査と同様の傾向を示した. また、南部川で、第I期には検出されなかったカルバマゼピンの検出があった.

表5. IDL, IQL および平均回収率

対象物質	IDL(µ g/L)	IQL(µ g/L)	試料換算IQL(ng/L)	平均回収率(%) (N=3~7)
ジフェンヒドラミン	0.46	1.2	2.4	78
アセトアミノフェン	0.57	1.5	3	50
カルバマゼピン	0.99	2.6	5.2	97
テトラサイクリン	5.5	13	28	93
オキシテトラサイクリン	3.1	8	16	76
スルファジアジン	0.46	1.2	2.4	89
スルファメトキサゾール	0.45	1.2	2.4	91
スルファピリジン	0.54	1.40	2.8	79
カフェイン	0.96	2.5	5	78

表6. 第 I 期における紀の川下流の結果

	採水日	H25.2.22	H25.5.31	H25.7.2	H25.8.19	H25.10.31	H25.11.12	H25.12.17	H26.1.7	H26.2.18
	ジフェンヒドラミン	N.D.	2.5	5.8	2.6	N.D.	N.D.	6.2	2.6	2.4
対	アセトアミノフェン	3.8	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	13	11
象 物	スルファメトキサゾール	N.D.	2.9	N.D.	N.D.	N.D.	N.D.	N.D.	2.9	2.5
質	スルファピリジン	N.D.	4.1	N.D.	N.D.	N.D.	N.D.	N.D.	6.1	N.D.
	カフェイン	120	140	170	150	210	280	96	190	300

(ng/L)

表7. 第 I 期における各河川の結果

	河川名	紀の川上流	熊里	· 予川	日高川	有田川	富田川	日置川
	採水日	H26.2.18	H25.7.10	H26.1.16	H25.9.10	H25.11.12	H25.11.13	H26.1.24
	ジフェンヒドラミン	2.0	6.8	N.D.	N.D.	N.D.	N.D.	N.D.
対	アセトアミノフェン	5.7	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
象	スルファメトキサゾール	1.2	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
物 質	スルファピリジン	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
貝	カフェイン	220	220	4.2	6.9	72	450	N.D.

(ng/L)

表8. 第Ⅱ期における各河川の結果

———— 春期	採水日	H27.5.20	H27.4.27	H27.3.25	H27.5.19	H27.4.27	H27.4.27	H27.5.14	H27.5.14
10 70	河川名	紀の川	熊野川	有田川	日高川	富田川	日置川	南部川	左会津川
*1	ジフェンヒドラミン	N.D.	N.D.	N.D.	N.D.	N.D.	2.5	N.D.	N.D.
対	アセトアミノフェン	N.D.	4.7						
象	スルファメトキサゾール	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	2.9
物 質	スルファピリジン	N.D.	5.3						
	カフェイン	280	7.9	N.D.	9.0	22	9.3	49	137
									(ng/L)

夏期	採水日	H27.8.3	H27.8.24	H27.8.5	H27.8.5	H27.8.24	H27.8.24	H27.8.5	H27.8.5
发 别	河川名	紀の川	熊野川	有田川	日高川	富田川	日置川	南部川	左会津川
対	ジフェンヒドラミン	3.2	N.D.	13	4.1	N.D.	2.7	6.6	5.1
象	スルファメトキサゾール	3.0	N.D.	N.D.	N.D.	N.D.	N.D.	3.7	N.D.
物	スルファピリジン	N.D.	N.D.	3.5	N.D.	N.D.	N.D.	2.9	N.D.
質	カフェイン	194	34	162	16	N.D.	N.D.	130	93
									(ng/L)

秋期	採水日	H27.11.27	H27.11.20	H27.11.25	H27.11.25	H27.11.20	H27.11.20	H27.10.7	H27.10.7
1/\ 7/1	河川名	紀の川	熊野川	有田川	日高川	富田川	日置川	南部川	左会津川
	ジフェンヒドラミン	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	2.4	N.D.
対	アセトアミノフェン	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	17	4.4
象	カルバマゼピン	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	7.2	N.D.
物	スルファメトキサゾール	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	4.5	N.D.
質	スルファピリジン	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	7.6	N.D.
	カフェイン	690	22	5.6	N.D.	N.D.	N.D.	110	110
									(ng/L)

冬期	採水日	H28.1.15	H28.1.14	H28.2.3	H28.2.3	H28.1.14	H28.1.14	H28.2.3	H28.2.3
令别	河川名	紀の川	熊野川	有田川	日高川	富田川	日置川	南部川	左会津川
4.1	ジフェンヒドラミン	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	2.4	N.D.
対 象	アセトアミノフェン	3.4	N.D.	N.D.	N.D.	N.D.	N.D.	20	N.D.
物物	カルバマゼピン	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	7.4	N.D.
質	スルファピリジン	6.3	N.D.	N.D.	N.D.	N.D.	N.D.	19	N.D.
貝	カフェイン	160	6.6	16	13	9.8	N.D.	140	60
									(ng/L)

3. 考察

第Ⅰ期,第Ⅱ期を通して,すべてng/Lオーダ ーでの検出であった.これは,人が一生涯を 70 年間として1日2Lの水を飲み続けたとして算 出した各物質の最大摂取量と1回の服用量を 比較しても低い濃度であり、ただちに人の健康 への影響はないレベルであると考えられる. (表9) 汚水処理率が低く, 高濃度での検出が 懸念されたが、他府県での調査との比較 $^{1)-5}$ で は,同程度か低いレベルであった.しかし,PPCPs の人の健康影響は、明らかになっていない部分 が多く,また,水生生物など環境中への影響も 懸念されている. 今後, より低濃度での影響が 明らかになれば、さらなる分析条件の検討が必 要となる.特に、今回の調査で検出されなかっ たサイクリン系の2物質については,他の物質 に比べ定量下限値が高いため,課題となる.

図2に各河川について,各物質の年間(第Ⅱ 期)総検出濃度を比較したグラフを示した.人 口との相関を見るために調査対象としたカフ ェインは,流域人口の多い紀の川以外に南部川, 左会津川で高濃度であった.これら2河川は, 他の河川と同程度の流域人口であるが,流域面 積が小さく水量が少ない河川であり,汚濁負荷 量の高い河川となっている. (表 10) さらに水 量が少なく負荷量が高くなる冬に検出頻度も 高くなっていることから,汚濁負荷量が検出に 影響していると考えられる. また, カフェイン とその他の物質との相関を図3に示した.直線 性などの相関関係は見られなかったが,ジフェ ンヒドラミン以外の物質については,カフェイ ンが 100 ng/L を閾値として, 検出される傾向が あった. 検出のあった河川は, 紀の川, 有田川, 南部川,左会津川で,いずれも流域面積に対し

て流域人口が比較的高く汚濁負荷量が高いと 考えられる.このことから,ジフェンヒドラミ ン以外の物質は,カフェインと同様に人口や 汚濁負荷量が検出に関係していることが示唆 される.

季節との相関を調査するために選定した 2 物質のうち,ジフェンヒドラミンは,富田川以外の7河川で検出があり,夏に検出率が高く,他の物質と挙動が異なった.ジフェンヒドラミンは,かゆみ止め等塗り薬としても使用されており,夏に使用頻度が高いことが影響していると考えられる他,環境中での安定性の違い,夾雑物の影響等も考えられる.一方,冬に使用頻度が高いと考えられるアセトアミノフェンについては,冬を中心として検出されているが,紀の川,南部川,左会津川のみの検出であった.使用頻度も影響していると考えられるが,汚濁負荷量の影響のほうが優位に働いていると考えられる.

[ま と め]

県内8河川について、抗菌剤を中心とした9種類のPPCPsについて、一斉分析によるスクリーニング調査を行ったところ、カフェインを含む6種類のPPCPsが検出され、人口及び汚濁負荷量の影響が示唆された。また、検出濃度は、ただちに人の健康への影響はないレベルであったが、今後のPPCPsの健康及び環境影響評価等の動向を注視していく必要がある。

表9. 服用量との比較

対象物質	1回の服用量(mg)	1日2L * 70年(mg)※
ジフェンヒドラミン	30	0.66
アセトアミノフェン	300	1.0
カルバマゼピン	200	0.37
スルファメトキサゾール	800	0.23
スルファピリジン (サラゾルスルファピリジンとして)	500	0.97
カフェイン (無水カフェインとして)	100	35

※本調査での最大検出濃度より算出

図2 各河川ごとの年間総検出濃度

表 10 各河川の流域人口と流域面積

河川名	紀の川	熊野川	有田川	日高川	富田川	日置川	南部川	左会津川
流域人口 (人)	666,907	47,566	56,560	49,889	19,299	5,409	14,735	70,460
流域面積 (km²)	1,750	2,360	468	652	254	415	97	85

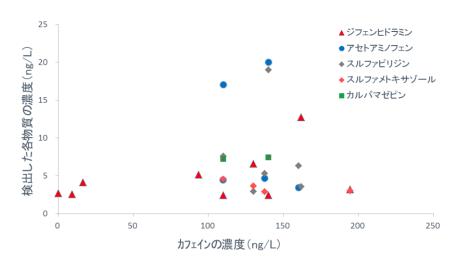


図3 カフェインとの相関

[文献]

- 3 鈴木俊哉:東京都健康安全研究センター研究年報 第63号 (2012)
- 2)上村 仁:神奈川県衛生研究所報告 第37 号(2007)
- 3)遠藤美砂子他:宮城県保健環境センター年報(平成20年度版)第26号(2008)
- 4) 大野ちづ子他:徳島県保健環境センター年 報 No. 28 (2010)
- 5) 宇野映介他:平成25年度福岡市保健環境研究所報 第39号 (2013)
- 6)環境省総合環境政策局環境保健部環境安全 課:化学物質環境実態調査実施の手引き

洪水が底生動物に及ぼした影響と回復過程の調査

井上博美,猿棒康量,山中典子,奥村幸恵*

Investigation into flood effects upon benthos and recovery process

Hiromi Inoue, Yasukazu Sarubo, Noriko Yamayaka and Sachie Okumura

キーワード:那智川,底生動物,洪水,指標生物

Key Words: the Nachi River, benthos, flood, Index organism

はじめに

平成23年9月,台風12号による記録的な大雨により,那智勝浦町を流れる那智川流域(流域面積24.5km²,河川延長8.5kmの二級河川)で行方不明者,死者を出す大洪水及び土石流が発生し甚大な被害となった.

当センターでは県内主要河川の底生動物を調査しており、平成 12 年度那智川の調査を実施していた.本調査では、翌年である平成 24 年度から 4 年間この洪水が底生動物に及ぼした影響と回復過程を調査するため生息する種や数の変化を調査し、あわせて平成 12 年度に実施された底生動物相を用いた河川の水質評価1) との比較も行った.

調査方法

1. 調査時期

24 年度~平成 27 年度の4年間で夏季と秋季もしくは冬季の年2回調査を行った.

	夏季	秋季•冬季							
24年度	24年6月13, 14日	24年12月11, 12日							
25年度	25年7月10, 11日	25年12月16, 17日							
26年度	26年7月 1日	26年10月 27日							
27年度	27年6月29, 30日	28年 1月 7,8日							

水質環境グループ *こころの医療センター

2. 調査地点

調査地点を図1に示す.

上流より St. A (原始林), St. 1 (二の瀬橋), St. 2 (井関バス停付近), St. 3 (川関橋)

St. Aは上流での土石流の影響を確認するため平成24年度より調査実施した.

原則として同地点で行うこととするが,工事 の影響などで調査できない場合は調査地点を 前後している.

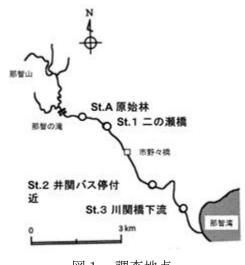


図1. 調査地点

3. 環境要因調査

- 1) 現地調査 気温,水温,流水幅,水深,流速,電気伝導率,DO
- 2) 理化学試験 pH, COD, BOD, SS, 全窒素 (T-N), 全リン (T-P)

4. 底生動物の採取と同定方法

採取方法は全国公害研協議会の調査マニュアル 2)に従ってDフレームネットによるキック・スイープ法で実施し、同定は日本産水生昆虫検索図設等 $^{3)}$ 4)により、可能な限り種まで同定を行った。また同定が困難な場合は属、科でとどめ、便宜上それらを1種類として取り扱うことした。

5. 評価方法

1) ASPT 値 (平均スコア値) ⁵⁾

日本版平均スコア法で、河川環境の良好性を示す指標である.各科に与えられたスコア(1~10)を合計して総スコア値を求め、総科数で割り求める.

ASPT値	評価
7以上	清水性
6以上~7未満	やや清水性
5以上~6未満	やや汚濁水性
5未満	汚濁水性

2) 0/E 値

過去の生息状況をもとに災害からの回復度 を評価する.12年度の科数を期待値,災害後の 科数を観測値として,観測値を期待値で割り求 める.1に近いほど回復度が高くなる.

3) IBI 値(生物保全指数) ^{6) 7)}

河川の健全度や人為的な影響の度合いを総合的に評価する.設定する9項目に対し1,3,5点で採点し、合計点で評価を行う.

区分	項目	1点	3点	5点
I	総科数	0~10	11~15	≧16
I	カゲロウの科数	0~1	2~3	≧4
I	カワゲラの科数	0	-	≧1
IV	トビケラの科数	0	1~2	≧3
٧	貧毛類の個体数の割合(%)	≧23.4	23.3~2.2	2.1~0
VI	汚濁に耐えない科数	0	1~3	≧4
VII	汚濁に耐える科の個体数割合(%)	≧51.9	51.8~6.1	6.0~0
VII	優占種の個体数割合(%)	≧60.7	60.6~36.7	36.6~0
IX	上位3つの優占種の個体数割合(%)	≧91.3	91.2~73.1	73.0~0

評価値		
45 ~ 38	Excellent	多様性がある
37~31	Good	Î
30~24	Fair	
23~17	Poor	4.5
16~9	Very poor	多様性が乏しい

結 果

1. 環境要因調査

環境要因調査の結果を表1に示す.

St. Aでは, SS が 26 年度秋季に, St. 2では 24 年度夏季と 27 年度夏季, St. 3では 24 年度, 25 年度夏季, 26 年度秋季そして 27 年度冬季に高い値を示した.

また27年度冬季のSt. 3において全リンが高い値となった.

2. 底生動物相

底生動物相を表2に,優占種と出現率の結果 を表3に示す.

1) St. A

24 年度より調査を追加した地点である. 24 年冬季と 26 年夏季には底質中で生息可能なユスリカ科が優占種となり、 総属数では 27 年度 は夏季, 冬季とも一番高く, 巣をもつヤマトビ ケラ属が優占種となった.

2) St. 1

12 年度では植物片の巣をもつマルツツトビケラが多く出現し、総個体数は調査した中で最も多かったが、水害後の調査では出現していない

24,26年度では夏季冬季ともに遊泳型のコカ

ゲロウ属,27年度ではSt.Aと同様にヤマトビケラ属が優占種となった.

3) St. 2

水害後の工事の影響により調査が実施できない年度があったが、27年度では夏季は総科数10、総属数12、冬季は総科数8、総属数9と他年度と比較して多く出現していた.

表 1 環境要因調查

	地点			St.A				St.1		
	地点名			原始村				二の瀬		
	年度		H24	H25	<u>т</u> Н26	H27	H24	H25	H26	H27
	調査時期	1				夏				
-	気温	(°C)	20.6	28.7	27.5	21.3	20.1	20.1	27.9	19.8
	水温	(°C)	16.5	22.0	19.3	17.5	16.6	16.6	20.3	17.5
	流水幅 水深	(m) (cm)	10~55	5 35 ∼ 85	5~10 23~60	20	20~45	6 20~45	5~25 20~45	25 10~20
	亦床 流速	(m/s)	0.29	0.44	0.43	10~20 0.59~0.5	1.50	0.57	0.37	0.53~0.61
	電気伝導度	(µ S/cm)	33	43	47	34	34	45	47	33
理	pН		6.7	6.7	6.9	6.8	6.4	6.9	6.9	6.9
化	BOD COD	(mg/L) (mg/L)	0.6 < 0.5	< 0.5 2.1	<0.5 0.6	<0.5 <0.5	0.7 < 0.5	< 0.5 2.1	<0.5 0.8	<0.5 <0.5
学	SS	(mg/L)	\ 0.3 1	3	<1	<1	\ 0.5 8	7	1	<0.5 <1
試験	T-N	(mg/L)	< 0.05	0.16	0.07	0.12	< 0.05	0.13	0.12	0.10
河大	T-P	(mg/L)	0.004	0.021	0.019	0.013	0.006	0.019	0.014	0.011
	調査時期					秋季・				
	気温 水温	(°C) (°C)	8.5 9.3	9.7 11.0	19.7 17.1	13.4 11.0	10.8 9.9	10.6 10.0	22.0 17.8	13.7 11.6
	流水幅	(m)	9.5 6	4	5 ~ 7	20	6	3~8	10~15	25
	水深	(cm)	10~50	25~41	13~60	30	10~40	18~28	10~50	30
	流速	(m/s)	0.81	0.48	0.60	0.42~0.48	0.75	0.35	0.65	0.44~0.54
	<u>電気伝導度</u> pH	(µ S/cm)	40 6.7	52 7.3	7.1	42 6.6	40 6.8	52 7.0	7.1	6.7
理	BOD	(mg/L)	< 0.5	1.3	0.6	0.0	0.9	0.9	0.8	0.8
化 学	COD	(mg/L)	< 0.5	< 0.5	0.7	<0.5	< 0.5	< 0.5	0.7	0.6
試	SS	(mg/L)	1	2	18	<1	< 1	3	2	<1
験	T-N T-P	(mg/L) (mg/L)	0.11 0.006	0.11 0.019	0.12 0.044	0.14 0.009	0.15 0.007	0.14 0.011	0.13 0.020	0.08 0.008
		(111g/ L/	0.000	0.010	0.011	0.000	0.007	0.011	0.020	0.000
_										
	地点			St.2				St.3		
	地点 地点名			St.2 井関バス	*1		*2	St.3 *2 川関	*2	
			H24		*1	H27	*2 H24	*2	*2	H27
	地点名		H24	井関バス(H25	* ¹ 停付近	H27 夏	H24	*2 川関	*2 橋	H27
	地点名 年度 調査時期 気温	(°C)	20.9	井関バス(H25 20.9	* ¹ 停付近	夏 21.0	H24 季 22.6	*2 川関 H25	橋 H26 28.3	21.9
	地点名 年度 調査時期 気温 水温	(°C)		井関バス(H25 20.9 17.0	* ¹ 停付近	夏 21.0 18.8	H24 季	*2 川関 H25 22.6 18.4	橋 H26 28.3 22.5	21.9 18.8
	地点名 年度 調査時期 気温	(°C)	20.9	井関バス(H25 20.9	* ¹ 停付近	夏 21.0	H24 季 22.6	*2 川関 H25	橋 H26 28.3	21.9
	地点名 年度 調査時期 気温温 水水水深 流速	(°C) (°C) (m) (cm) (m/s)	20.9 17.0 10~40 0.63	井関バス H25 20.9 17.0 4 10~40 0.43	* ¹ 停付近	夏 21.0 18.8 15 10~30 0.74~0.87	H24 季 22.6 18.4 10~70 0.66	*2 JII関 H25 22.6 18.4 6.5 10~70 0.35	橋 H26 28.3 22.5 15 60 0.46	21.9 18.8 15 10~15 0.59~0.80
	地点名 年度 調査温温 水水水流流 水流深速 東気伝子	(°C) (°C) (m) (cm)	20.9 17.0 10~40 0.63 64	井関バス H25 20.9 17.0 4 10~40 0.43 96	* ¹ 停付近	夏 21.0 18.8 15 10~30 0.74~0.87 68	H24 季 22.6 18.4 10∼70 0.66 56	**2 川関 H25 22.6 18.4 6.5 10~70 0.35 94	橋 H26 28.3 22.5 15 60 0.46 93	21.9 18.8 15 10~15 0.59~0.80 75
	地点名 年度 調査時期 気温 水水深 流、深 電気 PH	(°C) (°C) (m) (cm) (m/s) (µ S/cm)	20.9 17.0 10~40 0.63 64 6.5	井関バス(H25 20.9 17.0 4 10~40 0.43 96 6.8	* ¹ 停付近	夏 21.0 18.8 15 10~30 0.74~0.87 68 7.0	H24 季 22.6 18.4 10∼70 0.66 56 6.6	#2 JII関 H25 22.6 18.4 6.5 10~70 0.35 94 6.9	#2 H26 28.3 22.5 15 60 0.46 93 7.0	21.9 18.8 15 10~15 0.59~0.80 75 7.0
化	地点名 年度 調査温温 水水水流流 水流水流流 水流安 電気佐	(°C) (°C) (m) (cm) (m/s)	20.9 17.0 10~40 0.63 64	井関バス H25 20.9 17.0 4 10~40 0.43 96	* ¹ 停付近	夏 21.0 18.8 15 10~30 0.74~0.87 68	H24 季 22.6 18.4 10∼70 0.66 56	**2 川関 H25 22.6 18.4 6.5 10~70 0.35 94	橋 H26 28.3 22.5 15 60 0.46 93	21.9 18.8 15 10~15 0.59~0.80 75
化	地 点 名 年度 調気温温幅 水水深速 電気 PH BOD COD SS	(°C) (°C) (m) (cm) (m/s) (µ S/cm) (mg/L) (mg/L) (mg/L)	20.9 17.0 10~40 0.63 64 6.5 0.6 2.6 120	井関バス H25 20.9 17.0 4 10~40 0.43 96 6.8 0.6 2.3 4	* ¹ 停付近	夏 21.0 18.8 15 10~30 0.74~0.87 68 7.0 <0.5 0.7 31	H24 季 22.6 18.4 10~70 0.66 56 6.6 < 0.5 0.8 36	#2 JII関 H25 22.6 18.4 6.5 10~70 0.35 94 6.9 0.6 1.6	#2 H26 28.3 22.5 15 60 0.46 93 7.0 0.6 0.8 <1	21.9 18.8 15 10~15 0.59~0.80 75 7.0 <0.5 <0.5
	地点名 年度 調气温温幅 水水流医事 BOD COD SS T-N	(°C) (°C) (m) (cm) (m/s) (µ S/cm) (mg/L) (mg/L) (mg/L) (mg/L)	20.9 17.0 10~40 0.63 64 6.5 0.6 2.6 120 <0.05	井関バス H25 20.9 17.0 4 10~40 0.43 96 6.8 0.6 2.3 4 0.19	* ¹ 停付近	夏 21.0 18.8 15 10~30 0.74~0.87 68 7.0 <0.5 0.7 31 0.19	#24 \$\frac{22.6}{18.4} 10~70 0.66 56 6.6 < 0.5 0.8 36 <0.05	**2 JII関 H25 22.6 18.4 6.5 10~70 0.35 94 6.9 0.6 1.6 11	#2 H26 28.3 22.5 15 60 0.46 93 7.0 0.6 0.8 <1	21.9 18.8 15 10~15 0.59~0.80 75 7.0 <0.5 <0.5 2 0.16
化 学 試	地 点 名 年度 調 温 温 温 幅 水水流 伝 事 度	(°C) (°C) (m) (cm) (m/s) (p S/cm) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	20.9 17.0 10~40 0.63 64 6.5 0.6 2.6 120	井関バス H25 20.9 17.0 4 10~40 0.43 96 6.8 0.6 2.3 4	* ¹ 停付近	21.0 18.8 15 10~30 0.74~0.87 68 7.0 <0.5 0.7 31 0.19 0.046	H24 季 22.6 18.4 10~70 0.66 56 6.6 < 0.5 0.8 36 <0.05 0.015	#2 JII関 H25 22.6 18.4 6.5 10~70 0.35 94 6.9 0.6 1.6	#2 H26 28.3 22.5 15 60 0.46 93 7.0 0.6 0.8 <1	21.9 18.8 15 10~15 0.59~0.80 75 7.0 <0.5 <0.5
化 学 試	地 点 在 年度 調査温 派水流法 電気温 MR T	(°C) (°C) (m) (cm) (m/s) (μ S/cm) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)	20.9 17.0 10~40 0.63 64 6.5 0.6 2.6 120 <0.05	井関バス H25 20.9 17.0 4 10~40 0.43 96 6.8 0.6 2.3 4 0.19	* ¹ 停付近	夏 21.0 18.8 15 10~30 0.74~0.87 68 7.0 <0.5 0.7 31 0.19	H24 季 22.6 18.4 10~70 0.66 56 6.6 < 0.5 0.8 36 <0.05 0.015	**2 JII関 H25 22.6 18.4 6.5 10~70 0.35 94 6.9 0.6 1.6 11	#2 H26 28.3 22.5 15 60 0.46 93 7.0 0.6 0.8 <1	21.9 18.8 15 10~15 0.59~0.80 75 7.0 <0.5 <0.5 2 0.16
化 学 試	地 年 度 期	(°C) (m) (em) (em/s) (m/s) (µ S/cm) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (cmg/L)	20.9 17.0 10~40 0.63 64 6.5 0.6 2.6 120 <0.05 0.050	井関バス H25 20.9 17.0 4 10~40 0.43 96 6.8 0.6 2.3 4 0.19 0.019	序付近 H26 H26 19.0 19.1	21.0 18.8 15 10~30 0.74~0.87 68 7.0 <0.5 0.7 31 0.19 0.046 秋季	H24 季 22.6 18.4 10~70 0.66 56 6.6 < 0.5 0.8 36 <0.05 0.015 -冬季	**2 JII関 H25 22.6 18.4 6.5 10~70 0.35 94 6.9 0.6 1.6 11 0.20 0.014	#2 H26 28.3 22.5 15 60 0.46 93 7.0 0.6 0.8 <1 0.08 0.013	21.9 18.8 15 10~15 0.59~0.80 75 7.0 <0.5 <0.5 2 0.16 0.017
化 学 試	地 年 度 期 気水水流気 pHD C S N P P 査 温温幅深速導用 B O D D S N T T 調 気水水流流域	(°C) (°C) (m) (cm) (m/s) (m/s) (µ S/cm) (mg/L)	20.9 17.0 10~40 0.63 64 6.5 0.6 2.6 120 <0.05 0.050	井関バス H25 20.9 17.0 4 10~40 0.43 96 6.8 0.6 2.3 4 0.19 0.019	序付近 H26 19.0 19.1 8~15	夏 21.0 18.8 15 10~30 0.74~0.87 68 7.0 <0.5 0.7 31 0.19 0.046 秋季-	H24 季 22.6 18.4 10~70 0.66 56 6.6 < 0.5 0.8 36 <0.05 0.015 冬季 7.1 11.4 8	#2 JII関 H25 22.6 18.4 6.5 10~70 0.35 94 6.9 0.6 1.6 11 0.20 0.014	#2 H26 28.3 22.5 15 60 0.46 93 7.0 0.6 0.8 <1 0.08 0.013	21.9 18.8 15 10~15 0.59~0.80 75 7.0 <0.5 2 0.16 0.017
化 学 試	地 年 度 期 気水水流伝 PH BOD COS T-P 査 温温幅深 度 用 気水水深水流 の T-P 査 温温幅深 水水深 東 中 明 気水水深 大 T-P 音 温温幅深 中 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明	(°C) (°C) (m) (cm) (mm/s) (m/s) (µ S/cm) (mg/L)	20.9 17.0 10~40 0.63 64 6.5 0.6 2.6 120 <0.05 0.050	井関バス H25 20.9 17.0 4 10~40 0.43 96 6.8 0.6 2.3 4 0.19 0.019 6.8 10.6 5 28~42	序付近 H26 19.0 19.1 8~15 10~35	夏 21.0 18.8 15 10~30 0.74~0.87 68 7.0 <0.5 0.7 31 0.19 0.046 秋季 10.9 12.5 10 20	#24 \$\frac{22.6}{18.4} \$10\simprox 70 \$0.66 \$56 \$6.6 \$<0.5 \$0.8 \$36 \$<0.05 \$0.015 \$\frac{8}{11.4}\$ \$8 \$10\simprox 35	#2 JII関 H25 22.6 18.4 6.5 10~70 0.35 94 6.9 0.6 1.6 11 0.20 0.014	#2 H26 28.3 22.5 15 60 0.46 93 7.0 0.6 0.8 <1 0.08 0.013	21.9 18.8 15 10~15 0.59~0.80 75 7.0 <0.5 <0.5 2 0.16 0.017 9.0 12.0 15 20
化 学 試	地 年 度 期 気水水流気 pHD C S N P P 音 温温幅深速 導 H B O D D S T T - 調 気水水流	(°C) (°C) (m) (cm) (m/s) (m/s) (µ S/cm) (mg/L)	20.9 17.0 10~40 0.63 64 6.5 0.6 2.6 120 <0.05 0.050	井関バス H25 20.9 17.0 4 10~40 0.43 96 6.8 0.6 2.3 4 0.19 0.019	序付近 H26 19.0 19.1 8~15	夏 21.0 18.8 15 10~30 0.74~0.87 68 7.0 <0.5 0.7 31 0.19 0.046 秋季-	H24 季 22.6 18.4 10~70 0.66 56 6.6 < 0.5 0.8 36 <0.05 0.015 冬季 7.1 11.4 8	#2 JII関 H25 22.6 18.4 6.5 10~70 0.35 94 6.9 0.6 1.6 11 0.20 0.014	#2 **2 **2 **3 **2 **5 **5 **60 **0 **4 **6 **9 **3 **7 **0 **0 **6 **0 **0 **0 **0 **1 **0 *	21.9 18.8 15 10~15 0.59~0.80 75 7.0 <0.5 2 0.16 0.017
化学試験	地 年 奮 温温幅深速導 BODD SNP 查 温温幅深速導 BODD SNP 查 温温幅深速導 FND T- 調 気水水流伝 PH BODD SN T- 查 温温幅深速 導 FND T- 型 高温温幅深速 度 FND T- T- T- T- T- T- T- T- T- T- T- T- T-	(°C) (m) (em) (em/s) (m/s) (y S/cm) (mg/L)	20.9 17.0 10~40 0.63 64 6.5 0.6 2.6 120 <0.05 0.050 8.2 9.6 10 10~30 0.49 81 6.6	井関バス H25 20.9 17.0 4 10~40 0.43 96 6.8 0.6 2.3 4 0.19 0.019 6.8 10.6 5 28~42 0.79 98 6.9	19.0 19.1 8~15 10~35 0.72 68 7.1	夏 21.0 18.8 15 10~30 0.74~0.87 68 7.0 〈0.5 0.7 31 0.19 0.046 秋季 10.9 12.5 10 20 0.53~0.57 77	H24 季 22.6 18.4 10~70 0.66 56 6.6 < 0.5 0.8 36 <0.05 0.015 •冬季 7.1 11.4 8 10~35 0.58 88 6.6	#2 JII関 H25 22.6 18.4 6.5 10~70 0.35 94 6.9 0.6 1.6 11 0.20 0.014 6.9 10.6	#2 **2 **2 **3 **2 **5 **5 **60 **0 **46 **93 **7.0 **0.08 **0.013 **10 \pi 19.3 **10 \pi 15 **23 \pi 56 **0.54 **72 **7.0	21.9 18.8 15 10~15 0.59~0.80 75 7.0 <0.5 <0.5 2 0.16 0.017 9.0 12.0 15 20 0.50~0.53 93 6.9
化学試験 埋化	地 年 査 温温幅深速導HDD S N P 査 温温幅深速導用 S N N P 査 温温幅深速等 BODD S T T P 査 温温幅深速等 BDD S T P 費 温温幅深速等 BDD	(°C) (°C) (°M) (°M) (°M) (°M) (°M) (°M) (°M) (°M	20.9 17.0 10~40 0.63 64 6.5 0.6 2.6 120 <0.05 0.050 8.2 9.6 10 10~30 0.49 81 6.6	井関バス H25 20.9 17.0 4 10~40 0.43 96 6.8 0.6 2.3 4 0.19 0.019 6.8 10.6 5 28~42 0.79 98 6.9 0.9	P与付近 H26 H26 19.1 8~15 10~35 0.72 68 7.1 <0.5	フリー・ファイン ファイン ファイン ファイン ファイン ファイン ファイン ファイン	H24 季 22.6 18.4 10~70 0.66 56 6.6 く0.5 0.8 36 く0.05 0.015 -冬季 7.1 11.4 8 10~35 0.58 88 6.6 1.1	#2 JII関 H25 22.6 18.4 6.5 10~70 0.35 94 6.9 0.6 1.6 11 0.20 0.014 6.9 10.6 12~15 0.56 100 6.9 1.2	#2 **2 **2 **3 **2 **5 **6 **6 **0 **4 **6 **9 **3 **7 **0 **0 **6 **0 **8 **1 **0 **0 **1 **5 **2 **5 **6 **0 **5 **6 **0 **5 **6 **0 **5 **6 **0 **5 **6 **0 **5 **6 **0 **5 **0 **0	21.9 18.8 15 10~15 0.59~0.80 75 7.0 <0.5 2 0.16 0.017 9.0 12.0 15 20 0.50~0.53 93 6.9 0.8
化学試験 理化学	地 年 奮 温温幅深速導 BODD SNP 查 温温幅深速導 BODD SNP 查 温温幅深速導 FND T- 調 気水水流伝 PH BODD SN T- 查 温温幅深速 導 FND T- 型 高温温幅深速 度 FND T- T- T- T- T- T- T- T- T- T- T- T- T-	(°C) (m) (cm) (m/s) (µ S/cm) (mg/L)	20.9 17.0 10~40 0.63 64 6.5 0.6 2.6 120 <0.05 0.050 8.2 9.6 10 10~30 0.49 81 6.6	井関バス H25 20.9 17.0 4 10~40 0.43 96 6.8 0.6 2.3 4 0.19 0.019 6.8 10.6 5 28~42 0.79 98 6.9	19.0 19.1 8~15 10~35 0.72 68 7.1	夏 21.0 18.8 15 10~30 0.74~0.87 68 7.0 〈0.5 0.7 31 0.19 0.046 秋季 10.9 12.5 10 20 0.53~0.57 77	H24 季 22.6 18.4 10~70 0.66 56 6.6 < 0.5 0.8 36 <0.05 0.015 •冬季 7.1 11.4 8 10~35 0.58 88 6.6	#2 JII関 H25 22.6 18.4 6.5 10~70 0.35 94 6.9 0.6 1.6 11 0.20 0.014 6.9 10.6	#2 **2 **2 **3 **2 **5 **5 **60 **0 **46 **93 **7.0 **0.08 **0.013 **10 \pi 19.3 **10 \pi 15 **23 \pi 56 **0.54 **72 **7.0	21.9 18.8 15 10~15 0.59~0.80 75 7.0 <0.5 <0.5 2 0.16 0.017 9.0 12.0 15 20 0.50~0.53 93 6.9
化学試験 理化学試	地 年 在 期 気水水水流伝 PH B C O S N T - P 音 温温幅深速導 B B C O S N T - P 音 温温幅深速導 B B C O S N T - P 音 温温幅深速導 B B C O S N T - P B O D C O S T - N	(°C) (°C) (°M) (°M) (°M) (°M) (°M) (°M) (°M) (°M	20.9 17.0 10~40 0.63 64 6.5 0.6 2.6 120 <0.05 0.050 8.2 9.6 10 10~30 0.49 81 6.6 1.1	井関バス H25 20.9 17.0 4 10~40 0.43 96 6.8 0.6 2.3 4 0.19 0.019 6.8 10.6 5 28~42 0.79 98 6.9 0.9 く0.5 3 0.28	19.0 19.0 19.1 8~15 10~35 0.72 68 7.1 <0.5	フリー・ファイン ファイン ファイン ファイン ファイン ファイン ファイン ファイン	#24 \$\frac{22.6}{18.4} 10~70 0.66 56 6.6 < 0.5 0.015 ** ** ** ** ** ** ** ** ** *	#2 H25 22.6 18.4 6.5 10~70 0.35 94 6.9 0.6 1.6 11 0.20 0.014 6.9 10.6 12~15 0.56 100 6.9 1.2 0.5	### ### ### ### ### ### ### ### ### ##	21.9 18.8 15 10~15 0.59~0.80 75 7.0 <0.5 <0.5 2 0.16 0.017 9.0 12.0 15 20 0.50~0.53 93 6.9 0.8 2.3
化学試験 理化学	地 年 在 期	(°C) (°C) (°C) (°C) (°C) (°C) (°C) (°C)	20.9 17.0 10~40 0.63 64 6.5 0.6 2.6 120 <0.05 0.050 8.2 9.6 10 10~30 0.49 81 6.6 1.1	井関バス H25 20.9 17.0 4 10~40 0.43 96 6.8 0.6 2.3 4 0.19 0.019 6.8 10.6 5 28~42 0.79 98 6.9 0.9 く 0.5 3 0.28 0.013	19.0 19.1 8~15 10~35 0.72 68 7.1 <0.5 0.5	21.0 18.8 15 10~30 0.74~0.87 68 7.0 <0.5 0.7 31 0.19 0.046 秋季- 10.9 12.5 10 20 0.53~0.57 77 6.9 0.6 0.8 8 8 0.14	#24 季 22.6 18.4 10~70 0.66 56 6.6 く0.5 0.8 36 く0.05 0.015 ・冬季 7.1 11.4 8 10~35 0.58 88 6.6 1.1 2.0 47	#2 JII関 H25 22.6 18.4 6.5 10~70 0.35 94 6.9 0.6 1.6 11 0.20 0.014 6.9 10.6 12~15 0.56 100 6.9 1.2 0.5 1.2 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	### ### ### ### ### ### ### ### ### ##	21.9 18.8 15 10~15 0.59~0.80 75 7.0 <0.5 <0.5 2 0.16 0.017 9.0 12.0 15 20 0.50~0.53 93 6.9 0.8 2.3 78

*2 H24~26は滝麓橋下流

表 2 底生動物相

	ACDT			St.A					St.1					St.2					St.3			
	ASPT スコア										夏	季										
カゲロウ目 EPHEMEROPTERA		H12	H24	H25	H26	H27	H12	H24	H25	H26	H27	H12	H24	H25	H26	H27	H12	H24	H25	H26	H27	
フタオカゲロウ科	8																					
ヒラタカゲロウ科	9					7					4											
ヒラタカゲロウ属			5			13	13	11	1	6	9		3			1	1			1		
タニガワカゲロウ属			1		2		37	2		1						1						
キハダヒラタカゲロウ属						-					-											
ヒ <i>メ</i> ヒラタカゲロウ属 コカゲロウ科						7					5											
コルソロ・フィヤ コカゲロウ属	6		58		43	37	13	96	1	53	15		80			8	11	7		1	5	
フタバコカゲロウ属			00		15	9	10	9		12	30		1			1	''	,			5	
トビイロカゲロウ科	9																					
トビイロカゲロウ属			1					1														
ヒ外ビイロカゲロウ属							7															
マダラカゲロウ科	8																					
マダラカゲロウ属			1			30	47			1	3	+	2			3	-				1	
トンボ目 ODONATA サナエトンボ科	7				1		1															
カワゲラ目 PLECOPTERA							-															
オナシカワゲラ科	6																					
オナシカワゲラ属								3	1													
フサオナシカワゲラ属																						
ユビオナシカワゲラ属									1													
カワゲラ科	9																					
トウゴウカワゲラ属										2	1											
クラカケカワゲラ属 カミムラカワゲラ属					2	1	3															
オオヤマカワゲラ属					2		3															
ミドリカワゲラ科	9																					
カメムシ目 HEMIPTERA																						
ナベブタムシ科	7																24					
ヘビトンボ目 MEGALOPTERA																						
ヘビトンボ科	9				1		1									1						
トビゲラ目 TRICOPTERA	١,																					
ヒゲナガカワトビケラ科 ヒゲナガカワトビケラ属	9				2	9	2	1														
カワトビケラ科	9				2	ð		'														
タニガワトビケラ属	ľ				2					1									1			
シマトビケラ科	7				_	1													-		1	
コガタシマトビケラ属					1			1									18			3	2	
エチゴシマトビケラ属							2			2												
シマトビケラ属			2		17	51	13	1	1	46	19		4			9			1	4	9	
ミヤマトビケラ属					1					1												
ナガレトビケラ科 ナガレトビケラ属	9		0			- 11	4	2	0		44		2			7	00				4	
カワリナガレトビケラ科	9		2			11	4	2	2	1	11		2			1	23				4	
ツメナガナガレトビケラ属	"																					
ヤマトビケラ科	9																					
ヤマトビケラ属			1		70	222	17			36	191					12				1	1	
カクスイトビケラ科	10																					
マルツツトビケラ属																						
エグリトビケラ科	8				1																	
ニンギョウトビケラ科 ニンギョウトビケラ科	7					1					-											
ニンギョウトビケラ属 カクツツトビケラ科	9					'	2				5					1						
コカクツツトビケラ属	"					1	2				1					1						
ヒゲナワトビケラ科	8																					
チョウ目 LEPIDOPTERA																						
メイガ科	7																18					
コウチュウ目 COLEOPTERA																						
ヒラタドロムシ科	8						4										1					
ヒポロムシ科	8		1				1					-										
ハエ目 DIPTERA ガガンボ科	8		6		3		2	1		17	2									1	2	
ブユ科	7		U		J		1	11		.,	-									'	2	
ユスリカ科	6		31		82		'	16		45			115			1		24		4	1	
ヌカカ科	7																					
アブ科	6						1															
ナガレアブ科	8					1	1	1														
総個体数		-	109	0	243	401	173	156	7	224	296	-	207	0	-	46	96	31	2	15	31	
総科数		_	10	0	12	11	18	11	5	10	10	_	6	0	-	10	7	2	2	6	7	
総属数 下S値(松7コZ値)	-	_	11 on	0	15	15	150	14	27	90	13	<u> </u>	7	0		70	7	12	16	7	10	
TS値(総スコア値) ASPT値(平均スコア値)		_	80 8.0	0	96 8.0	90 8.2	150 8.3	84 7.6	37 7.4	80 8.0	81 8.1	_	46 7.7	0	_	79 7.9	53 7.6	12 6.0	16 8.0	45 7.5	53 7.6	
MOLI IE(工均入订IE)	I	1	0.0	U	0.0	U.L	0.0	1.0	7.4	0.0	V. I	1	1.1	U	-	1.0	1.0	0.0	0.0	1.J	1.0	

	ASPT			St.A					St.1					St.2					St.3		
	スコア										秋季・										
カゲロウ目 EPHEMEROPTERA		H12	H24	H25	H26	H27	H12	H24	H25	H26	H27	H12	H24	H25	H26	H27	H12	H24	H25	H26	H27
フタオカゲロウ科	8			1																	
ヒラタカゲロウ科	9			1	1					2											
ヒラタカゲロウ属			5		4	4	13	3		3	12	3			1		25			1	
タニガワカゲロウ属							5														
キハダヒラタカゲロウ属																					
ヒメヒラタカゲロウ属						2					15										
コカゲロウ科	6																				
コカゲロウ属			34	48	1	9	5	28	23	24	4	39	36			168	29	26	28		5
フタバコカゲロウ属			35	18			1	16	1	2	1				1			3	1		
トビイロカゲロウ科 トビイロカゲロウ属	9																				
ヒメトビイロカゲロウ属																					
マダラカゲロウ科	8																				
マダラカゲロウ属			2			13	24				9					1	1				
トンボ目 ODONATA																					
サナエトンボ科	7																				
カワゲラ目 PLECOPTERA																					
オナシカワゲラ科	6																				
オナシカワゲラ属								1	1						1						
フサオナシカワゲラ属						1	2														
ユビオナシカワゲラ属																					
カワゲラ科	9		_																		
トウゴウカワゲラ属			7						3										2		
クラカケカワゲラ属					0	17	6			-	16	4			0						
カミムラカワゲラ属 オオヤマカワゲラ属					2	23	20			5	17 1	1	1		3	1				1	
オオヤマガングラ属 ミドリカワゲラ科	9				'	1					1		- 1			1					
カメムシ目 HEMIPTERA	3					<u> </u>															
ナベブタムシ科	7											3					10				
ヘビトンボ目 MEGALOPTERA												Ť									
ヘビトンボ科	9			1	1	5	5										2				
トビゲラ目 TRICOPTERA																					
ヒゲナガカワトビケラ科	9																				
ヒゲナガカワトビケラ属					1	2	12				2						1				
カワトビケラ科	9																				
タニガワトビケラ属	١.,																				
シマトビケラ科 コガタシマトビケラ属	7						2		1			5					13				
エチゴシマトビケラ属			1	1			1	2	'			J					13				
シマトビケラ属			14	10	3	34	43	8	39	2	51	2	10		3	5	3	18	5		1
ミヤマトビケラ属			17	10	Ü	04	10	٠	00		01		10		٠	v	"	10	v		'
ナガレトビケラ科	9																				
ナガレトビケラ属			4	1		22	8				12	10	2			2	19				
カワリナガレトビケラ科	9																				
ツメナガナガレトビケラ属																1					
ヤマトビケラ科	9																				
ヤマトビケラ属			8			48	52	3			61					2					
カクスイトビケラ科	10			2																	
マルツツトビケラ属			1				609														
エグリトビケラ科	8																				
ニンギョウトビケラ科 ニンギョウトビケラ属	'						1				2										
ーンキョフトログラ属 カケツツトビケラ科	9						'				2										
コカクツツトビケラ属	"						5					1									
ヒゲナワトビケラ科	8						4					3					1				
チョウ目 LEPIDOPTERA	Ť											Ť									
メイガ科	7																				
コウチュウ目 COLEOPTERA																					
ヒラタドロムシ科	8						1														
ヒパロムシ科	8		4				5	3													
ハエ目 DIPTERA																					
ガガンボ科	8			3		5	2			2	1	17					9		2		
ブユ科	7		1				_		400	,			•					4.5			
ユスリカ科	6		46	17			3	16	133	1		1	3	10			86	12	4		
ヌカカ科 マゴも	7					0	1				0						1				
アブ科 ナガレアブ科	6					2	1				3										
	T °	_	162	103	14	188	829	80	201	41	207	85	52	10	9	182	200	59	42	2	6
総科数			11	9	6	13	18	7	5	6	11	10	5	1	5	8	12	3	5	2	2
総属数		_	13	11	8	15	23	9	7	8	15	11	5	1	5	9	13	4	6	2	2
TS値(総スコア値)		-	89	72	49	104	149	51	34	45	87	78	37	6	37	66	94	19	36	18	13
ASPT値(平均スコア値)	1	_	8.1	8.0	8.2	8.0	8.3	7.3	6.8	7.5	7.9	7.8	7.4	6.0	7.4	8.3	7.8	6.3	7.2	9.0	6.5
	_			_	_	_		_	_	_			_	_	_					_	

表3.優占種と出現率

地点	調査	優占位	夏季			秋季・		
地点	年度		優占種	生活型	出現率	優占種	生活型	出現率
	平成 12年度	第一位第二位	調査な	L		調査	なし	
	平成	第一位	コカゲロウ属	遊泳型	53%	ユスリカ科(腹鰓なし)	造巣掘潜型	28%
	24年度	第二位	ユスリカ科(腹鰓なし)	造巣掘潜型	28%	フタバコカゲロウ属	遊泳型	22%
st.A	平成	第一位	採取な	L.		コカゲロウ属	遊泳型	47%
	25年度	第二位	****	_		フタバコカゲロウ属	遊泳型	17%
	平成	第一位	ユスリカ科(腹鰓なし)	造巣掘潜型	34%	エルモンヒラタカゲロウ	滑行型	21%
	26年度	第二位	ヤマトビケラ属	携巣型	29%	カミムラカワゲラ属	匍匐型	14%
						ウルマーシマトビケラ	造網型	14%
	平成	第一位	ヤマトビケラ属	携巣型	55%	ヤマトビケラ属	携巣型	26%
	27年度		ウルマーシマトビケラ	造網型	13%	ウルマーシマトビケラ	造網型	18%
	平成		クシゲマダラカゲロウ	滑行掘潜型	15%	マルツツトビケラ	携巣型	73%
	12年度		シロタニガワカゲロウ	滑行型	14%	ヤマトビケラ属	携巣型	6%
	平成	第一位	コカゲロウ属	遊泳型	62%	コカゲロウ属	遊泳型	35%
	24年度	第二位	ユスリカ科(腹鰓なし)	造巢掘潜型	10%	フタバコカゲロウ属	遊泳型	20%
st.1						ユスリカ科(腹鰓なし)	造巣掘潜型	20%
	平成		オナシカワゲラ属等	匍匐型	29%	ユスリカ科(腹鰓なし)	造巣掘潜型	66%
	25年度	第二位				ウルマーシマトビケラ	造網型	19%
	平成		コカゲロウ属	遊泳型	24%	コカゲロウ属	遊泳型	59%
	26年度		ウルマーシマトビケラ	造網型	21%	カミムラカワゲラ属	匍匐型	12%
	平成	第一位	ヤマトビケラ属	携巣型	64%	ヤマトビケラ属	携巣型	29%
	27年度		フタバコカゲロウ属	遊泳型	10%	ウルマーシマトビケラ	造網型	24%
	平成	第一位	調査な	L		コカゲロウ属	遊泳型	46%
	12年度	第二位		_		ガガンボ科	固着型	20%
	平成	第一位	ユスリカ科(腹鰓なし)	造巢掘潜型	56%	コカゲロウ属	遊泳型	69%
st.2	24年度	第二位	コカゲロウ属	遊泳型	39%	ウルマーシマトビケラ	造網型	19%
	平成 25年度	第一位 第二位	採取な	L		ユスリカ科(腹鰓なし)	造巢掘潜型	100%
	平成	第一位	調査な			カミムラカワゲラ属	遊泳型	33%
	26年度	第二位		C		ウルマーシマトビケラ	造網型	22%
	平成	第一位	ヤマトビケラ属	携巣型	26%	コカゲロウ属	遊泳型	92%
	27年度	第二位	ウルマーシマトビケラ	造網型	20%	ウルマーシマトビケラ	造網型	3%
	平成	第一位	ナベブタムシ科	遊泳型	25%	ユスリカ科(腹鰓なし)	造巢掘潜型	43%
	12年度	第二位		匍匐型	24%	コカゲロウ属	遊泳型	15%
	平成	第一位	ユスリカ科(腹鰓なし)	造巢掘潜型	77%	コカゲロウ属	遊泳型	44%
	24年度	第二位	コカゲロウ属	遊泳型	23%	ウルマーシマトビケラ	造網型	31%
st.3	平成	第一位	タニガワトビケラ属 ウルマーシマトビケラ	造網型 造網型	50% 50%	コカゲロウ属	遊泳型	67%
	25年度	第二位				ウルマーシマトビケラ	造網型	12%
	平成	第一位	ユスリカ科(腹鰓なし)	造巣掘潜型	27%	ウエノヒラタカゲロウ	滑行型	50%
	26年度	第二位	コガタシマトビケラ	造網型	20%	カミムラカワゲラ属	匍匐型	50%
	平成	第一位	ウルマーシマトビケラ コカゲロウ属	造網型遊泳型	29% 16%	コカゲロウ属	遊泳型	83%
	27年度	第二位	フタバコカゲロウ属	遊泳型	16%	ウルマーシマトビケラ	造網型	17%

また、水害前の 12 年度と同じコカゲロウ属 が 24, 27 年度の冬季に優占種となった.

4) St. 3

工事の影響で採取地点を変更している時期があり単純に比較はできないが、27年度夏季においては水害前と変わらない総科数7であった.しかし護岸工事をおこなっている地点のために河床が安定しておらず、26、27年度の冬季では総属数2と少ない調査結果となった.

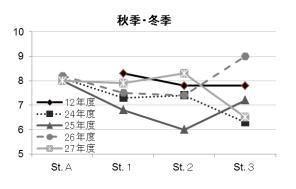
3. 評価

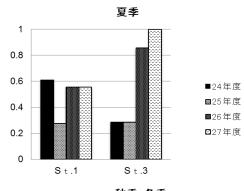
1) ASPT 値

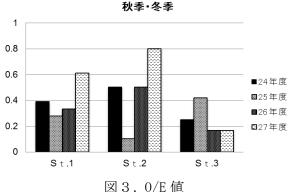
ASPT 値の結果を図2に示す.

夏季については24年度のSt. 3でやや清水性 となったが、それ以外の時期では清水性を示し た.

冬季では、ばらつきがあり 24 年度の St. 3, 25 年度の St. 1, St. 2, 27 年度の St. 3 でやや清水性であった. 他の時期では清水性を示した.




図2. ASPT 値


2) 0/E 値

0/E 値の結果を図3に示す.

12 年度は夏季が St. 1, St. 3で, また冬季が St. 1, St. 2, St. 3で調査を行っていたため、その地点での比較を行った.

St.1 では25年度に夏季冬季ともに0.28と

なり低い値を示したが、26、27年度の夏季は 0.56、27年度の冬季は0.61と上昇傾向にある.

St. 2の冬季でも St. 1の冬季と同様に 25 年度は 0.10 と著しく低くなったが, 26 年度では 0.50, 27 年度では 0.80 と上昇していた.

St. 3の夏季では,24,25年度で0.29であったが,26年度では0.86,27年度は1.00と上昇した.しかし,冬季では26,27年度の総科数・総個体数が少ないため低迷状態となった.

3) IBI 値

IBI 値の結果を表4および図4に示す.

夏季では上流である St. A, St. 1 では 31 点以上あり Good 以上の評価となった。下流の St. 2 から St. 3 にかけては Very Poor や Poor の評価となったが、27 年度は Good の評価となった.

また冬季では 25 年度が全ての地点で評価が低く Fair から Very Poor で生物の多様性は乏しいという結果であったが, 26, 27 年度の St. A, St. 1, St. 2 は Good 以上となり, 多様性があるという評価となった。しかし 27 年度の St. 3 については, Poor の評価となった.

表 4. IBI 値

ul. F	調査						夏	季								秋	⟨季•冬	.季					-
地点	年度	Ι	I	Ш	IV	V	VI	VII	VII	X	評価値	評価	I	I	Ш	IV	٧	VI	VI	VII	X	評価値	評価
	12年度																						
	24年度	1	5	1	5	5	5	3	3	3	31	G	3	3	5	5	5	5	3	3	3	35	G
St.A	25年度												1	3	1	5	5	5	3	1	1	25	F
	26年度	3	3	5	5	5	5	3	5	3	37	G	1	3	5	3	5	5	5	3	3	33	G
	27年度	3	3	5	5	5	5	5	3	3	37	G	3	3	5	5	5	5	5	5	5	41	EX
	12年度	5	4	5	5	5	5	5	5	5	44	EX	5	3	5	5	5	5	5	1	3	37	G
	24年度	3	3	5	5	5	5	3	1	3	33	G	1	3	5	3	5	5	3	3	3	31	G
St.1	25年度	1	3	5	3	5	5	5	5	5	37	G	1	1	5	3	5	5	1	1	1	23	Р
	26年度	1	3	5	5	5	5	3	5	5	37	G	1	3	5	3	5	5	5	1	3	31	G
	27年度	1	3	5	5	5	5	5	1	3	33	G	3	3	5	5	5	5	5	5	5	41	EX
	12年度												1	3	5	5	5	5	5	3	3	35	G
	24年度	1	3	1	3	5	5	1	3	1	23	Ρ	1	1	5	3	5	5	5	1	1	27	F
St.2	25年度												1	1	1	1	5	1	1	1	1	13	VP
	26年度												1	3	5	3	5	5	5	5	3	35	G
	27年度	1	3	1	5	5	5	5	5	5	35	G	1	3	5	5	5	5	5	1	1	31	G
	12年度	1	3	1	3	5	5	5	5	5	33	G	3	3	1	5	5	5	3	3	5	33	G
St3	24年度	1	1	1	1	5	3	1	1	1	15	VP	1	1	1	3	5	3	3	3	1	21	Р
	25年度	1	1	1	3	5	3	5	3	1	23	Р	1	1	5	3	5	5	3	1	3	27	F
	26年度	1	3	1	3	5	5	3	3	3	27	F	1	1	5	1	5	3	5	3	1	25	F
	27年度	1	3	1	5	5	5	5	3	3	31	G	1	1	1	3	5	3	5	1	1	21	Р

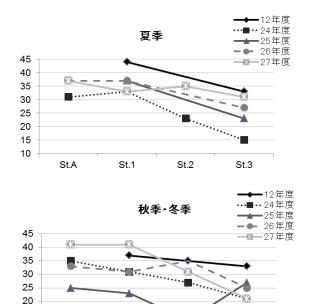


図4. IBI 値

St.2

St.3

考 察

St.1

15 10

St.A

水害からの回復過程における4年間の調査 について以下のことが考えられる.

水害後翌年の 24 年度では造巣掘潜型のユスリカ科が優占種となっている地点が多く,土石流や工事の影響により泥質が堆積していたことが原因と考えられる.また,25 年度では各地点で工事が頻繁に行なわれていたため,日中は調査ができず工事が始まる前の早朝に調査を開始した地点もあった.各指標の結果からも25 年度の評価が低く,IBI 値については人為的な影響も評価する指標であることから,25 年度は工事の影響で底生動物が生息しにくい環境であったと推測される.

26,27年度においては0/E値,IBI値も徐々に上昇しており、水害からの回復の兆しがみられたが、St.3については工事が行われていたため、回復が遅れていると考えられる.

まとめ

水害の影響により、底生動物は壊滅的な打撃を受けた. 24 年度から 27 年度にかけて 4 年間調査した結果, 27 年度の調査では総個体数や種数も増えたものの、全体的には水害前の状態まで回復していない. 特に St.3 では工事による人為的なかく乱があったため、今なお底生動物が生息しにくい環境であると示唆された. 那智川の底生動物は回復途中であることがわかったため、河川改修工事が完了し、河床が安定した時期に再調査を行う予定である.

参考文献

- 1)猿棒康量,他:底生動物相を用いた河川の 水質評価-那智川-,和衛公研年報 47,44-48, 2001
- 2)全国公害研協議会環境生物部会:河川の生物学的水域環境評価基準の設定に関する共同研究報告書,平成7年3月
- 3) 川合禎次編:日本産水生昆虫検索図説,東海大学出版会(東京),1985

川合禎次・谷田一三共編:日本産水生昆虫ー科・属・種への検索-,東海大学出版会 2005 4)野崎隆夫:大型底生動物を用いた河川環境評価-日本版平均スコア法の再検討と展開-,水環境学会誌 Vol.35 No.4 2012

- 5) 岩切淳,他:五ヶ瀬川及び祝子川の底生動物による水質特性,宮崎県衛生環境研究所年報22,138-143,2010
- 6) 菅野猛 他:底生動物による広瀬川の水質 評価およびその長期推移に関する調査,全国環 境研会誌 Vol.34 No.3 187-192,2009
- 7) 坂元勇太 他:底生動物による耳川の水質 評価,宮崎県衛生研究所年報26,89-94,2015 8) 奥村充司:多変量解析を用いた河川におけ る底生無脊椎動物相と河川形態との関係,福井

県工業高校専門学校,研究紀要,自然科学・工学 47,11-16,2013

V 発 表 業 績

1. 誌上発表

1) 残留分析の測定値に与える食品成分の影響に関する研究

尾花裕孝*¹,梶村計志*¹,高取聡*¹,北川陽子*¹,阿久津和彦*¹,吉光真人*¹,福井直樹*¹,小阪田正和*¹,山口聡子*¹,並河幹夫*²,伴創一郎*²,大久保祥嗣*³,中島涼*³,丸山量子*³,角谷直哉*⁴,宮本伊織*⁴,山下浩一*⁵,

西山隆之*5,神藤正則*6,山本直美*6,髙井靖智,樋下勝彦,渡辺卓穂*7

厚生労働科学研究費補助金(食品の安全確保推進研究事業)検査機関の信頼性確保に関する研究, 平成27年度総括・分担報告書,41~124,2016

食品中に残留する農薬や動物用医薬品の分析において、試験液中の共存成分(マトリックス)により分析値が過小あるいは過大評価される場合があり、これらは「マトリックス効果」と呼ばれている。マトリックス効果は、分析結果の信頼性に大きな影響を及ぼすため、制御方法の確立は重要である。そこで、今年度は、GC-MS(/MS)分析における農薬由来のマトリックス効果とその制御法について、地方衛生研究所7機関で検討した。

その結果、検量線用農薬混合標準液中の農薬群がマトリックスとして作用し、残留農薬の定量値に影響を及ぼす可能性があることが分かった。特に高濃度の農薬検出事例の際、試験液を希釈測定する場合には、農薬群に由来するマトリックス効果が顕在化し、定量値への影響が生じやすくなると推察された。その制御法については、検量線用農薬混合標準液中の農薬数を減ずるか、試験液及び検量線用農薬混合標準液のマトリックス量を補いながら希釈することで当該現象は抑制できることが示唆された。また、内標準物質による定量値の補正も有効であった。これらの手法は、GC-MS(/MS)を用いた検査の精度管理体制の基礎を構築する上で、有用であると考えられた。

*1:大阪府立公衆衛生研究所,*2:京都市衛生研究所,*3:神戸市環境保健研究所,*4:大阪市立環境科学研究所,*5:奈良県保健研究センター,*6:堺市衛生研究所,*7:一般財団法人食品薬品安全センター

2. 学会•研究会等発表

- 1) 迅速透析法による保存料一斉分析の検討,第52回全国衛生化学技術協議会年会,静岡市,2015,12月,東嶋祐興,高井靖智,畠中哲也
- 2) 2, 4-ジアミノアニソール (水質) の分析, 平成27年度化学物質環境実態調査環境科学セミナー, 東京都, 2016, 1月, 山本道方

3. 所内研究発表会

場 所 和歌山県環境衛生研究センター研修室

開催日 平成28年3月15日

1) マダニ類のSFTSウイルス保有状況調査 寺杣文男,下野尚悦,松井由樹

- 2) 鶏肉におけるリステリアの汚染実態調査 河島眞由美,中岡加陽子,松井由樹
- 3) 流入下水を用いた下痢症ウイルスサーベイランスについて 下野尚悦,松井 由樹,寺杣文男
- 4) 分析法の妥当性評価 (動物用医薬品について) 樋下勝彦
- 5) 危険ドラッグ分析の検討 東嶋祐興
- 6)酸性雨共同調査研究上野智子,野中 卓,桶谷嘉一,大谷一夫
- 7) 和歌山県のPM2.5について 桶谷嘉一,野中 卓,上野智子,大谷一夫
- 8) 黄砂影響調查 野中 卓,桶谷嘉一,上野智子,大谷一夫
- 9) 洪水が底生動物に及ぼした影響と回復過程の調査 井上博美,猿棒康量,梶本かおり,大楠剛司
- 10) 水質中の 2, 4 ジアミノアニソールの分析法の検討 山本道方

VI 資料

所内研究発表会要旨 (IV調査研究掲載分は割愛)

鶏肉におけるリステリアの汚染実態調査について

○河島眞由美、中岡加陽子、松井由樹 (微生物グループ)

【はじめに】

リステリア属菌は、動物の糞便や土壌、河川水など環境中に極めて広く分布する常在菌である。リステリア属は8菌種より成るが、ヒトに病原性を持つのはリステリア・モノサイトゲネス(Listeria monocytogenes 以下「リステリア」という。)のみといわれている。健康な成人が発症することはまれで、発症しても軽症のまたとはまれで、発症しやすく、重症化して髄膜炎や敗血症になって死に至る場合もある。また、妊婦も一般の成人に比べ10~20倍感染しやすく、発症すると胎盤を通じて胎児に感染しやすく、発症すると胎盤を通じて胎児に感染しやすく、発症すると胎盤を通じて胎児に感染し、早産や新生児の髄膜炎・敗血症、あるいは胎児の死亡・死産を引き起こすことがある。

リステリア症のほとんどはリステリアに汚染された食品を摂取することにより起こる食中毒と考えられている。そこで、今回、県内を流通している調理用肉の汚染状況を把握することを目的に汚染実態調査を行った。

【材料と方法】

県内を流通している鶏肉 40 検体を用いた。 リステリアの分離は厚生労働省通知の「リス テリア・モノサイトゲネス定性試験法」に従い 行った(図1)。

ALOA 寒天培地からはリステリア属が疑われる青緑色集落のうちハローを伴う定型集落を優先的に、PALCAM 寒天培地からはハローを伴う灰色から濃オリーブグリーンの定型集落をそれぞれ1平板5個まで釣菌した。

釣菌したコロニーはトリプトソーヤ寒天培地 (SCD) で再分離した後、リステリア属菌の確認試験として、グラム染色、カタラーゼ試験、半流動寒天培地における 25° での傘状発育確認、VP 反応試験を行った。

更にリステリア属菌と同定した菌株について、リステリアの確認試験として、 β リジンディスク法による溶血試験とラムノースおよびキシロースの糖分解試験を行った。 β リジンディスク法ではディスク周辺で溶血の増強が認められたもの、糖分解性試験はラムノース陽性、キシロース陰性であったものをリステリアと同定した。

【結果】

40 検体中、分離平板上に疑わしい定型集落が認められたのは一次増菌液を塗沫した ALOA 寒天培地で 28 検体、PALCAM 寒天培地で 23 検体、二次増菌液を塗沫した ALOA 寒天培地で 21 検体、PALCAM 寒天培地で 20 検体であった。そのうちリステリア属菌は一次増菌液塗沫の ALOA 寒天培地で 18 検体(18/28)、PALCAM 寒天培地で 17 検体(17/23)であり、二次増菌液塗沫の ALOA 寒天培地で 20 検体(20/21)、PALCAM 寒天培地で 20 検体(20/20)であった。リステリア属菌と同定された菌株についてリステリアの確認試験を行った結果、9 検体からリステリアが検出された(表1)。

【考察】

二次増菌液から分離された菌のほとんどがリステリア属菌であったことから、2 度の増菌はリステリア属菌以外の微生物の増殖を抑え、リステリア属菌の生育を促進したと考えられる。しかし、検体No.20 のように一次増菌液塗沫のALOA 寒天培地からのみリステリアが分離された検体もあることから、検体によっては2 度増菌を行うことによってリステリア以外の菌を増殖させてしまい、リステリアの分離が困難になる場合もあると考えられる。

ALOA 寒天培地の方が PALCAM 寒天培地より多くのリステリアが分離できたこと、ALOA 寒天培地上でハローを伴ったコロニーはすべてリステリアであったこと、また、ハローを伴わないリステリアは確認できなかったことから、ALOA 寒天培地はリステリアの判別が容易で精度の高い培地であると思われる。

【まとめ】

鶏肉 40 検体中、20 検体がリステリア属菌に 汚染されており、そのうち 9 検体はヒトに病原 性を持つリステリアに汚染されていた。

今後は、分離したリステリアの血清型を調べ、 リステリア以外のリステリア属菌の菌種同定を 行う予定である。また、リステリアの定性試験 が陽性であった検体については定量試験も実施 する予定である。

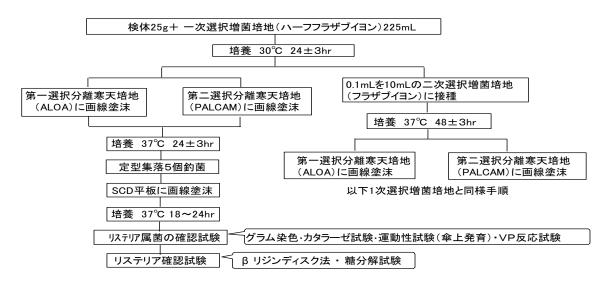


図1. 通知によるリステリア・モノサイトゲネス定性試験法のフロー図

表1. 疑わしい集落が認められた検体の結果

	ALOA寒天培地(第一選択分離寒天培地)								PAL		 天培地(第	第二選択分	· 計離寒天均	等地)
検体 No.	一次選択増菌液				二次選択増菌液				— <u>)</u>	次選択増殖	菌液		欠選択増殖	菌液
INO.	疑わしい 集落	ハロー 形成	リステリア 属菌	リステリア	疑わしい 集落	ハロー 形成	リステリア 属菌	リステリア	疑わしい 集落	リステリア 属菌	リステリア	疑わしい 集落	リステリア 属菌	リステリア
1	0		+	_	0		+	_	0	+	_	0	+	_
2	0	有	+	+	0	有	+	+	0	_	_	0	+	_
3	0		_		0		_							
4	0		_											
5	0		_		***************************************			***************************************			***************************************			
6	0	有	+	+	0	有	+	+	0	+	+	0	+	+
7	0		_		0		+	_	0	_	_	0	+	_
8	0		+	_	0		+	_	0	+	_	0	+	_
9	0		+	_	0		+	_	0	+	_	0	+	_
14	0		_						0	_	_			
15	0		_						0	_	_			
17	0		+	_	0		+	_	0	+	_	0	+	_
18	0		+		0		+	_	0	+	_	0	+	
19	0	有	+	+	0	有	+	+	0	+	_	0	+	_
20	0	有	+	+	0		+	_	0	+	_	0	+	_
21	0		_				_	_	0	_	_			
22	0		_				_	_						
25	0	有	+	+	0	有	+	+	0	+	+	0	+	+
26	0		+	_	0		+	_	0	+	_	0	+	_
27	0	有	+	+	0	有	+	+	0	+	_	0	+	+
28	0	有	+	+	0	有	+	+	0	_	_	0	+	+
29	0		+	_	0		+	_	0	+	_	0	+	_
32	0		+	_	0		+	_	0	+	_	0	+	_
34	0		_											
35	0		_											
37					0	有	+	+	0	+	+	0	+	+
38	0	有	+	+	0	有	+	+	0	+	+	0	+	_
39	0		+	_	0		+	_	0	+	_	0	+	_
40	0		+	_	0		+	_	0	+	_	0	+	_
計	28	8	18	8	21	8	20	8	23	17	4	20	20	5

流入下水を用いた下痢症ウイルスサーベイランスについて

○下野 尚悦、松井 由樹、寺杣 文男

【はじめに】

和歌山県のウイルスサーベイランスは、感染症発生動向調査事業に基づき実施されている。本県では感染症発生動向調査事業の検体が少ないため地域流行の状況が十分には把握できていない。そこで、ヒトから糞便中に排泄されるウイルスは、下水道を通って下水処理場に集積することを利用して、下水処理場で採水した流入下水を用いてウイルス検索を実施し、現状のウイルスサーベイランス等の結果と比較することにより、その有用性について検討をしたので報告する。

【材料・方法】

県内北部の下水処理場において 2013 年4月より 流入下水 500ml を毎月採取し、陰電荷膜吸着誘出 法により濃縮後、マイクロプレートを用いて培養細 胞(A549・Vero・HEp-2・RD-18s・VeroE6)に 接種し、ウイルス分離を試みた。培養期間は2代目 までの 28 日間とし、細胞変性効果が認められたも のについて中和抗体法、或いはダイレクトシーケン ス法による塩基配列の決定とBLAST検索により同 定を行った。また、同時にノロウイルス遺伝子の検 出をリアルタイム RT-PCR 法により実施した。

また、同下水処理区域外ではあるが、医療機関においてウイルス感染症が疑われる患者から採取された臨床材料 374 検体についてもウイルス分離を実施した。

【結 果】

2013 年 4 月~2015 年 12 月現在、流入下水より分離されたウイルス株は 101 株、内アデノウイルス(以下 Ad) 53 株、エンテロウイルス 35 株、レオウイルス 12 株、ライノウイルス 1 株が分離でき、またエンテロウイルスの内訳は、エコーウイルス(以下 E) 14 株、コクサッキーウイルスB群(以下 CB) 21 株で手足口病及びヘルパンギーナの主な原因となるコクサッキーウイルスA群(以下 CA)は分離できなかった。臨床材料からは Ad27 株、E9株、CA31 株、CB5 株、パレコウイルス(以下 HPeV) 5 株が分離され(表1)、流入下水からウイルスが

分離できたことにより環境水サーベイランスの利点でもある集団レベルでのウイルスの流行状況を把握できた。5・8・10月の時間帯別ウイルス検出数を図1に示す。ウイルス検出数とノロウイルスのコピー数とは関係性がなかったが、ウイルス検出数で5月と10月で同じ傾向を示した。

ノロウイルスの検出状況を下水処理区域内を含む保健所管内の定点医療機関からの患者報告数と共に図2に示す。 2013・2014 年度は夏から秋にかけて検出されない月があったが2015年4月~2016年1月まで全ての月で検出された。

【考 察】

県内北部の下水利用人口約 38,000 人の少ない地域でも流入下水よりウイルスが分離できたことから少ない地域でも流入下水を用いたウイルスサーベイランスを実施することが可能と考えられた。時間帯別によるウイルス検出数は採水時間によって変動があり、今回検討した結果では比較的よくウイルスが検出できた時間帯は 16 時頃と考えられた。

ノロウイルスはウイルス検出と患者報告数の関係について、2013年度は11月でウイルス検出と患者報告数の増加が同時に見られた。2014年度は11月頃の流行初期時にノロウイルスが検出されず、また2015年度は採水した全ての期間でウイルスが検出された。このことからノロウイルスの検出と患者報告数の関係性については年によって違いが見られた。

【まとめ】

CA 及び HPeV は流入下水より検出出来なかった ため病原体サーベイランスの方が優れていた。

ノロウイルスついては、患者報告数が少ない週でも流入下水から検出されたため効率的に流行状況の把握ができた。

流入下水よりウイルスが分離できたことにより下水利用人口の少ない地域でも環境水サーベイランスを行うことができ、また環境水サーベイランスの利点でもある集団レベルでのウイルスの流行状況を把握できた。

表1. ウイルス検出結果集計

	メニアーバース円間水	×1.40
ウイルス名	流入下水	臨床検体
アデノウイルス	53	27
エンテロウイルス	コクサッキーウイルスB群 21 エコーウイルス 14	コクサッキーウイルスA群 31 コクサッキーウイルスB群 5 エコーウイルス 9
パレコウイルス		5
レオウイルス	12	
ライノウイルス	1	1
合計	101	78

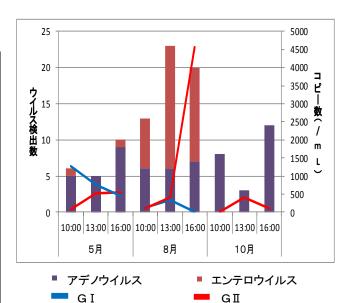


図 1. 季節・時間別のウイルス検出数と ノロウイルスコピー数の比較

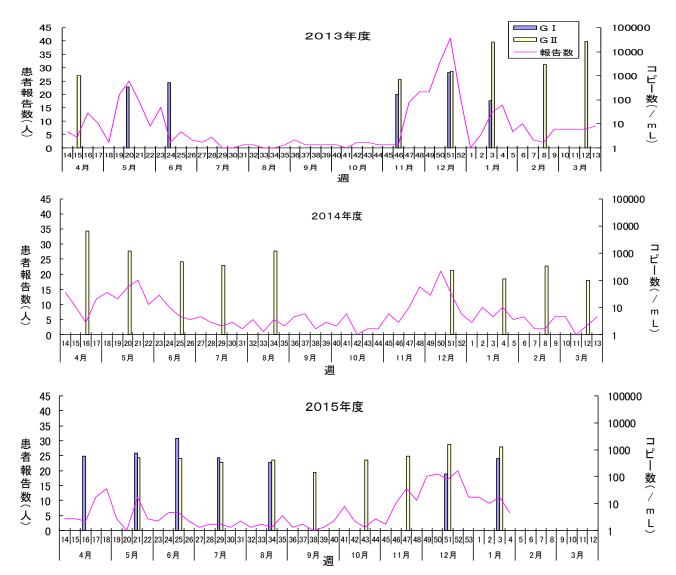


図2. 年度別ノロウイルス検出及び管内定点医療機関からの感染性胃腸炎報告数の推移

分析法の妥当性評価(動物用医薬品について)

○樋下勝彦(衛生グループ)

はじめに

平成22年12月24日付けで厚生労働省から「食品中に残留する農薬等に関する試験法の妥当性評価ガイドラインの一部改正について」が通知された。これにより食品中に残留する農薬、飼料添加物及び動物用医薬品に関する試験で、基準への適合性について判断を行う分析法に対して食品の多様性等を考慮し、試験法の妥当性を確認することが必要となった。

平成26年度にサンプルの均一化方法に「ドライアイスを用いた凍結粉砕法(以下、「凍結粉砕法」とする。)」を導入し、また測定機器の更新を行った。残留農薬分析については妥当性を評価したが、動物用医薬品については未評価であった。また、従来法では除去しきれない脂質等による機器への影響低減や、簡易な抽出方法を検討し、妥当性評価を実施したので報告する。

方 法

1 試料

試料は鶏肉の食用部、豚肉の食用部、牛肉の食 用部、ブリ、エビ、鶏卵を用いた。

2 標準品

市販混合標準液(和光純薬工業製 PL-1-3 及び PL-2-1)を含む 56 成分を対象とした。検量線用標準溶液はメタノール:水=1:1 にて希釈し、0.0005 ~0.020ug/ml の 6 濃度作成した。

3 装置及び測定条件

LC: Agilent 1200 シリーズ

MS/MS: Agilent 6460QQQ

カラム: 資生堂カプセルコア ADME (2.1mm×5.0cm,

2.7μm) カラム温度:40℃

移動相: A:0.05% HCOOH aq B:0.05%HCOOH ACN グラジエント: (B)0分(1%)→5分(5%)→13分(15%)→18分(30%)→20.5分(50%)→24分(100%) 流速:0.3ml/min 注入量:5μlイオン化法:ESI(±) イオン源温度:300℃キャピラリ電圧:3000V 測定モード:MRM

4 添加回収試験用試料

均一化後の試料 5.0g に混合標準液を 0.01µg/g となるように添加し、20分程度放置したものを添 加回収試験用試料とした。

5 試験方法

凍結粉砕法により均一化した試料 5.0g を PP 製 遠沈管にとり、セラミックホモジナイザー2個、0. 5%ギ酸含有アセトニトリル 5ml、アセトニトリル 飽和ヘキサン 5ml、無水硫酸マグネシウム約 1g を 加え5分間振とうした。その後、3000rpmで3分間 遠心分離し、ヘキサン層を廃棄した。残さ及びア セトニトリル層にアセトニトリル飽和ヘキサンを 5ml 加え、5 分間振とうし、4000rpm で 5 分間遠心 分離を行った。ヘキサン層を廃棄し、アセトニト リル層を分取した。残さに 0.5%ギ酸含有アセトニ トリルを 5ml 加え、5 分間振とうし、4000rpm で 5 分間遠心分離を行い、アセトニトリル層を分取し、 先ほど分取したアセトニトリル層を合わせて 10ml にメスアップした。この溶液を5℃、4000rpmで5 分間遠心分離を行い、上澄みを 0.5ml 分取し水で 等倍に希釈した。その後5℃、13000rpmで30分間 遠心分離を行い、0.2µmのフィルターをとおし、試 験液とした。(図1)

6 妥当性評価

妥当性評価は分析者2名、2併行3日間の添加回 収試験を実施し、ガイドラインに示す、真度、併 行精度及び室内精度の評価を行った。

結果及び考察

1 均一化方法の検討

平成26年度に農産物サンプルの均一化に取り入れた凍結粉砕法により、畜水産物の均一化を行った。通常に処理すると脂質が固まり、均一化が不十分であるが、凍結粉砕法では十分な均一化ができていた。また、試料の秤量時においてもサンプルが塊状になりにくく操作性は良好であった。なお、鶏卵サンプルは通常処理の方が操作性がよい

ことから、通常処理を採用した。

2 前処理法の検討

2.1 抽出方法の検討

通知試験法Iではヘキサン脱脂のみであり、精製が不十分と思われた。また、濃縮行程があることから、操作が煩雑となっていた。そのため、今回通知試験法I改(図1)及びQuEChERS法にヘキサン脱脂を加えた方法(図2)により検討を行った。どちらも良好な回収率が得られたが、回収できる医薬品に差があったため、今回は通知試験法I改を採用した。

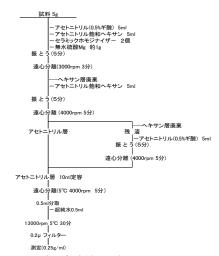
2.2 抽出溶媒の検討

抽出溶媒として、アセトニトリル、アセトニトリル:メタノール=8:2、0.5%ギ酸含有アセトニトリルにより検討を行った。アセトニトリル:メタノール=8:2、0.5%ギ酸含有アセトニトリルで良好な回収率が得られた。しかし、回収できる医薬品に差があったため、今回は0.5%ギ酸含有アセトニトリルを採用した。

2.3 精製の検討

通知試験法I改ではヘキサン脱脂及び冷却、高遠心のみの精製であるため、限外ろ過膜による精製を試みたが、回収率の低下及び、次に示す圧力の上昇の改善には至らなかったことから、今回は追加精製を行わない方法により測定を行った。

3 機器条件の検討


今回検討を行った前処理法により精製した試験 液を連続分析するとカラム圧力の上昇が見られた。 そのため、分析カラムの前にプレフィルターを設 置し、カラムコンパートメントの機能を利用しプ レフィルターのみを洗浄するメソッドを構築した。 その結果、連続分析を行っても圧力の上昇が見ら れず、安定した測定が可能となった。

4 妥当性評価の結果

通知試験法 I 改により精製を行い、妥当性評価 試験を実施した結果を表 1 に示す。6 サンプルすべ てに共通して 56 成分中 31 成分が良好な結果が得 られた。

まとめ

凍結粉砕法と通知試験法 I をベースとした方法を 組み合わせることにより簡易な方法で測定を行うこ とが可能となった。この方法の、妥当性評価を行ったところ、56 成分中31 成分において良好な結果が得られた。しかし、一部医薬品については感度の不足や回収率が悪いため、これらについては今後の検討課題である。

図1 通知試験法 I 改

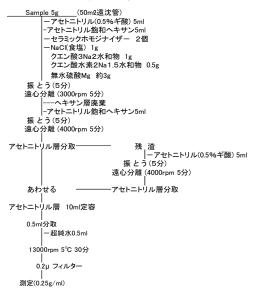
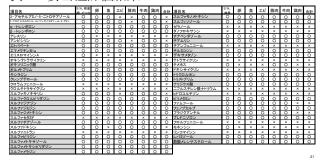



図 2 QuEChERS 法ベース

表 1 妥当性評価結果

危険ドラッグ分析の検討

東嶋祐興 (衛生グループ)

【はじめに】

近年、麻薬や覚せい剤等と同様の有害性を持つ ことが疑われる危険ドラッグが流行し、大きな社 会問題となっている。

この問題に対応するため法整備が進められ、平成 19 年 4 月から薬事法(現医薬品、医療機器等の品質、有効性及び安全性の確保等に関する法律)で厚生労働大臣の指定する薬物が「指定薬物」として規制されている。また、本県では、平成 24 年 12 月 28 日に「和歌山県薬物の濫用防止に関する条例」が施行され、指定薬物とは別に、知事指定薬物及び知事監視製品を規制している。

このような背景から、危険ドラッグによる県民への危害防止を目的に、今後本県において指定薬物、知事指定薬物の取締りを行う可能性があるため、公的試験検査機関である当センターにおいて危険ドラッグ分析に取り組むことにした。

【材料と方法】

1 標準品及び試薬等

(1)標準品: α -PBP、MPHP、 α -PHPP、EAM2201、QUCHIC、5-Fluoro MN-18、FUB-PB-22、5-Fluoro AB-PINACA、MN-18、ADBICA、ADB-FUBINACA、AM2201 benzimidazole analog は Cayman Chemical 社製を用いた。

(2) 試薬:メタノール及びアセトニトリルは和光 純薬工業製の残留農薬・PCB 試験用を用いた。

2 危険ドラッグ製品

薬務課から譲り受けた危険ドラッグ製品 21 品目を用いた。

3 検査フロー

危険ドラッグ製品の分析については、図1に示

す危険ドラッグ製品検査フローに従った。

(1)試験溶液の調製

厚生労働省通知 1 に準じ、次のように調製した。まず、試料が植物片の場合はフィンガーマッシャーで粉砕して共栓試験管に 30 の 1 もの 1 を加えた。試料が液体の場合は 150 1 採取し、減圧乾固した後、メタノール 1 を加えた。次に、メタノールを加えた溶液を 1 分間 超音波処理した後、 1 0. 1 20 1 ボンブランフィルターでろ過したものを試験溶液とした。なお、試験検査には試験溶液を適宜メタノールで希釈して用いた。

また、メタノールの代わりにアセトニトリルを 用いた試験溶液も調製した。

(2) スクリーニング試験

スクリーニング試験ではGC/MSのスペクトルライブラリサーチで候補に挙がった化合物について、LC/PDA及びLC/MSの分析結果で裏付けすることで化合物を推定した。なお、GC/MSのスペクトルライブラリはSWGDRUG及びCayman Chemical社が提供するものを、LC/PDAのスペクトル解析は国立医薬品食品衛生研究所の「違法ドラッグデータ閲覧システム」の分析データを利用した。また、LC/MSによる解析については化合物の[M+H]+を確認することで行った。

(3)確定試験

確定試験では、試験溶液とスクリーニング試験で推定した化合物の標準品について、GC/MS、LC/PDA及びLC/MSのリテンションタイム並びにスペクトルを比較し化合物を確定した。また、リテンションタイムの確認については、標準品と試験溶液の化合物がほぼ等量になるよう混合し、

GC/MS 及び LC/PDA においてピークトップが分かれないことも確認した。

4 装置及び測定条件

GC/MS、LC/PDA 及び LC/MS の測定条件は厚生労働省の通知 ^{1),2)}に準じた。なお、装置は GC/MS: Agilent 6890N(GC),5975N(MSD)、LC/PDA: Waters Acquity H-Class、LC/MS: Agilent 1200 Series (LC),6460 QQQ(MSD)を用い、カラムは通知と同じ製品を採用した。

図1 危険ドラッグ製品検査フロー

【結果】

危険ドラッグ 21 製品を分析した結果(表 1)、 21 製品から延べ 29 化合物について同定すること ができた。

カルボン酸エステル構造を持つ合成カンナビノイドについては、通知¹⁾の方法で標準品(QUCHIC 及び FUB-PB-22)を GC/MS 測定したところ、メチルエステル体と 8-キノリノールにアルコール分解することが確認された。そこで、標準品をアセトニトリル溶液(メタノール溶液を窒素で乾固した後、アセトニトリルで溶解)にして測定したところ、分解を抑えることができた。この結果から、合成カンナビノイドの検出が疑われる危険ドラッグ製品については、化合物本体の検出を容易にするため、メタノール抽出する通知の方法に加えて、アセトニトリル抽出も行うことにした。

なお、スクリーニング試験において推定された 化合物のうち、5-Fluoro QUPIC、AB-PINACA、 4-Methyl- α -PPP については、標準品未入手のた め、今回同定には至らなかった。

表1 危険ドラッグ製品の分析結果

No.	パッケージに表示 されている文字		同定した化合物数と その名称	未同定化合物 (標準品未入手)
1	SUPER SNAKE GOLD	1	EAM2201	
2	FEELING Royal	1	α -PBP	
3	TANAKA 田中 斬	1	α -PBP	
4	FEELING Royal NEW	1	MPHP	
5	ZOMBIE COOOOL New	1	MPHP	
6	FEELING Fresh 3rd NEW	2	MPHP、α-PHPP	
7	Hi Kick	2	MPHP, QUCHIC	5-Fluoro QUPIC
8	Speed 55 inspire New	1	α -PHPP	
9	La vie en rose 02	2	5-Fluoro MN-18、 FUB-PB-22	
10	Black Fairy	1	5-Fluoro AB-PINACA	
11	HONEY FLASH flame 02	1	MN-18	
12	89	1	MN-18	4-Methyl-α -PPP
13	仁 PLUS ADVANCE 02	1	FUB-PB-22	5-Fluoro QUPIC
14	THE SUPER LEMON SPEED	1	FUB-PB-22	
15	Original Spice Diamond 18	2	ADBICA, ADB-FUBINACA	AB-PINACA
16	Fairy Another 02	2	MN-18、 5-Fluoro MN-18	
17	Hot Stuff Another 02	2	MN-18、 5-Fluoro MN-18	
18	Jackpot Mystery 01	0	_	5-Fluoro QUPIC
19	Sexual GOLD Superior 02	2	5-Fluoro MN-18、 FUB-PB-22	
20	EMO AUTOROUTE 3GR 11	2	AM2201 benzimidazole analog, QUCHIC	
21	Original Spice Gold 18	2	ADBICA、 ADB-FUBINACA	AB-PINACA

【考察】

今回分析した危険ドラッグ製品は、平成 25 年から 26 年に入手されており、入手から時間が経過している。従って、推定時に用いるライブラリ等の分析データが揃っていたことから、比較的スムーズに分析することが可能であった。しかし、実際の検査においては、分析データのない新規物質などの化合物を含む製品を分析することがあり得るので、今後、NMR 等による分子構造の解析を行うことを想定し、製品からの化合物単離について検討することが必要と思われる。

参考文献

- 厚生労働省通知:指定薬物の分析法について,
 平成19年5月21日付け薬食発第0521002号
- 2) 厚生労働省通知:指定薬物の測定結果等について、平成22年9月14日付け薬食発0914第5号他

酸性雨共同調查研究

大気環境グループ ○上野智子 野中卓 桶谷嘉一 大谷一夫

1. はじめに

和歌山県は全国環境研協議会による酸性 雨全国調査に1991年度開始の第1次調査から参加している。現在、2009年度から実施 されている第5次調査を行っている。

今回、海南市役所屋上(海南)及び環境衛 生研究センター屋上(センター)における酸 性雨の状況について報告する。

2. 調查方法

- (1) 採取場所・採取方法・採取期間
- ① 海南

湿性沈着は降水時開放型捕集装置を使用 し1週間単位で、乾性沈着はFP法にて2週 間単位で行った。

② センター

ボトルを使用し1日単位で行った。

(2) 調査期間

平成 27 年 4 月~平成 27 年 12 月

(3) 測定方法

酸性雨共同調査マニュアルのとおり

3. 調査結果及び考察

- (1) 湿性沈着
- ① 海南の pH 及び EC 経年変化 (図1)

pH は 4.62 から 4.93 の値の範囲にあり、 常に酸性雨であった。pH は平成 23 年度まで 上昇傾向であったが、平成 24 年度に低下し、 そのままの状態で推移していた。また、EC は pH の逆相関であった。

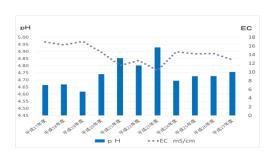


図 1.pH 及び EC の経年変化

② イオン成分の沈着量

10 年間のイオン成分の年間沈着量平均は、 全国平均ⁱと比べて低かった。

③ 海南における沈着量の成分組成

海南における過去 10 年間の各イオン成分 組成を図 2 に示す。陽イオンは約 40%、陰 イオンは約 50%が海塩由来成分で占められ ていた。

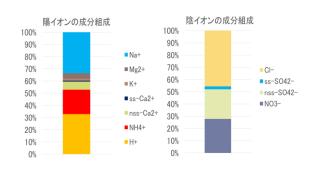


図2.各イオン成分組成

④ 海南における各成分の沈着量(図3) 海南における10年間の沈着量を比較した。 $nss-S0_4^{2-}$ と NH_4^+ が高い相関関係を示した。 また、 NO_3 -も同様の傾向であった。

nss-Ca²⁺は低い濃度で推移していた。

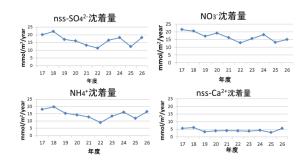


図3.各成分沈着量の経年変化

降水の pH の低下に寄与する主要な成分は 硫酸及び硝酸であり、その寄与率の指標として $nss-S0_4^2$ を $nss-S0_4^2$ と $N0_3$ の和で割った 濃度比の経年変化を図 4 に示した。

この値は0.45 から0.55 までの値でほぼ横ばいの数値を示し、 $nss-SO_4^2$ -と NO_3 -の濃度は拮抗していた。

図4. nss-S0₄²⁻/(nss-S0₄²⁻+N0₃-)の経年変化

⑤ 海南とセンターの比較(図5)(図6) nss-S0₄²⁻、N0₃-及び NH₄+において海南とセンターの沈着量の値の差は大きいものの相 関関係を示していた。

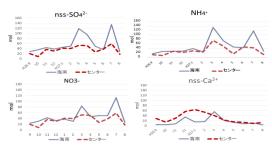


図5.海南とセンター各成分の経月変化

海南とセンターの月平均 pH の値は、海南の方が酸性で推移していた。

図6. 海南及びセンターの pH の経月変化

(2) 乾性沈着

nss- SO_4^2 と NH_4 +の濃度は高い相関関係を示した。長距離移動する物質として硫酸アンモニウムが挙げられることから、nss- SO_4^2 と NH_4 +の濃度を比較すると比率はほぼ 1:2 になり、硫酸アンモニウムや硫酸水素アンモニウムとして存在することが示唆された。季節的な傾向を検討すると、nss- SO_4^2 -と NH_4 +の比率は夏季にほぼ 1:1 になることに対し冬季はほぼ 1:2 となった。

4. 今後の予定

現在行っている FP 法の 5 段ろ紙には、アンモニアガス及びアンモニウム塩が十分に分離されないという問題がある。この問題を解決するため平成 28 年 4 月から開始する第6次調査では、インパクターを追加した 6 段ろ紙による乾性沈着調査を開始する。

また、自動雨水採取装置をセンターに設置 し、現在のボトルによるサンプリング方法や 海南との比較検討を行う。

i 環境省 酸性雨モニタリングデータ (平成 17年 度~平成 26年度)

和歌山県の PM2.5 について

○ 桶谷 嘉一、野中 卓、上野 智子、大谷 一夫 (大気環境グループ)

【はじめに】

微小粒子状物質 (PM2.5) は粒径が小さいため呼吸器の深部まで届くことが指摘されており、呼吸器や循環器への影響が懸念されている。そのため、2009 年 9 月に環境基準が設定された (日平均値:35 μg/m³、年平均値15 μg/m³)。本県においても2012 年度より常時監視測定 (質量濃度)を行っており、2015 年 3 月現在では県有局としては8 局で測定を行っている。また、PM2.5 については成分分析を行うことも併せて定められているため、海南市役所測定局 (以下、「海南」とする) において2013 年度から実施している。本研究発表では、常時監視結果および成分分析から得られた結果について報告する。

【測定内容】

質量濃度は自動測定器を用い1時間値を、成分分析は表1に示す項目を成分測定マニュアル(環境省)に準じて測定した。サンプリングは、環境省が設定した全国統一期間に14日間連続で実施した。

表 1 成分分析項目

イオン成分	Cl ⁻ 、NO ₃ ⁻ 、SO ₄ ²⁻ 、Na ⁺ 、K ⁺ 、
	NH ₄ ⁺ , Mg ²⁺ , Ca ²⁺ , (COO) ₂ ²⁻
炭素成分	有機炭素(OC)、元素状炭素(EC)
無期元素成分	Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Mo, Sb, Cs, Ba, La, Ce, Hf, W, Ta, Pb

【結果と考察】

1. 常時監視結果解析について

県有局が8局体制となった2014年9月から2015年11月までの日平均値変動(以下、「日変動」とする)について局間の相関係数を算出した結果、全ての値が0.8以上であった。これは日変動が全測定局で類似していることを示しており、濃度上昇は広域的な影響を受けていたと考えられた。

2. 成分分析の季節平均について

2013 年春季から 2015 年秋季の成分分析結果から各季平均を算出した結果、いずれの季節においても SO_4 ²、 NH_4 ⁺、OC が主成分となっていることを確認できた。 NO_3 については冬季に他の季節より含有率が多かった。 NO_3 は燃焼に由来する成分であるため、冬季の燃料使用増加に起因すると考えられた。

3. 日平均値高濃度事例の解析について

2015 年夏季の成分分析期間中に海南の 日平均値が 40 μg/m³ を連続して超過した 日があった (7月31日~8月2日)。常時 監視 1 時間値結果において光化学オキシダ ント (オゾン) 濃度と PM2.5 質量濃度の上 昇タイミングがほぼ一致していたため、光 化学反応により PM2.5 の生成が進んだと 考えられた。そこで、エアロゾルモデル (SPRINTARS、九州大学作成)、後方流跡 線(NOAA HYSPLIT、1000·1500·2000m、 72 時間)、指標成分を用いた解析を行った。 日平均値が 40 μg/m³ を超過した日につい て SPRINTARS (硫酸塩、有機物) を確認 すると、硫酸塩および有機物濃度は日本全 域で高濃度であり、光化学反応が起こりや すい状況であった。また、後方流跡線は大 陸方向から朝鮮半島を経由し、海南へ到達していた。期間中の後方流跡線変化については、低濃度であった日は海上を起点としており、高濃度時は大陸方面を起点にしていた。指標成分による解析には、シュウ酸(光化学反応の指標)、Pb および As を用いた。質量濃度とシュウ酸濃度の日変動が一致していたため、光化学反応が PM2.5 の生成に大きく関与していると考えられた。また、Pb、As 濃度変動もシュウ酸の日変動に一致していたため、光化学反応の原因物質が大陸から移流してきた可能性が高いことを確認できた。

【まとめ】

本調査研究では以下のことを確認できた。

- PM2.5 県有8局の変動は類似しており、 広域的な影響を受けていることを確認した。
 成分分析の各季節平均から、海南市役所
- で採取した PM2.5 の主成分は SO_4^2 、 NH_4 +、 OC であることを確認した。また、冬季には NO_3 の含有率が増加した。
- 3. 2015 年夏季の高濃度事例は大陸方向から原因物質が流入し、光化学反応により PM2.5 が生成された可能性を各種モデルおよび指標成分を用いた解析から確認できた。

図1 シュウ酸と質量濃度の日変動

黄砂影響調査

○野中 卓, 桶谷 嘉一, 上野 智子, 木野 惠太**, 大谷 一夫 (大気環境グループ)

1. 緒言

近年、中国大陸内での大気汚染物質の増加、およびこれらの日本への長距離輸送が問題となっている。一方同じく中国大陸を発生源とする黄砂による健康被害についても注目されており、大気中の粒子(エアロゾル)の発生源に関する調査が急がれる。

これまでの調査により、黄砂や海塩は粗大粒子に分類されること、粗大粒子、PM2.5にかかわらず他の地域からの移流の影響が大きいこと、地域独特の固定発生源があることが分かっている。

2. 他地点データの活用

(1) 方法

- ① 地点:海南市役所及び環境衛生研究センター
- ② 期間: H25. 5. 8-21, H26. 5. 8-21, H27. 5. 11-20
- ③ 対象: PM2.5
- ④ PMF 解析で分離された発生源の指標成分・主要成分について、地点間の相関を確認した。

(2) 結果及び考察

固定発生源(F3)では、鉄鋼業の指標の Mn で地 点間の相関があったが、他の成分での相関がな かったため、発生源の種類は同じであるが、固 定発生源としては別の地点の可能性がある。

移動発生源(F5)では、自動車由来であるため 地点間の相関があった。

平均寄与濃度の高い成分である移流及び二次 生成(F2, 4, 7)でも地点間の相関があった。

以上のことから固定発生源の差はあるものの、 海南市役所でのエアロゾルの長距離輸送の調査 は可能である。

表1. 指標成分・主要成分の地点間の相関

	発生源	寄与	地点間	の相関		
	種類(場所)	濃度	有	無		
F1	土壌(周辺)	3.4	Al, Ti	Ca ²⁺		
F2	二次(県南)	3.6	NH_4^+ , SO_4^{2-}			
F3	鉄鋼業(固定)	0.9	Mn	Fe, Zn, Pb		
F4	硝酸ガス(移流)	2.9	NO_3^- , NO_x			
F5	自動車(周辺)	0.7	Sb			
F6	ろ紙ブランク	2.0	${\rm Mg}^{2^+}$	Na ⁺		
F7	二次(中国)	8.7	NH ₄ +, SO ₄ ²⁻			

3. 指標成分の検討

- (1)調查方法
- ① 地点:海南市役所
- ② 期間: H27.5.7-20, 7.23-8.5, 10.21-11.3
- ③ 対象: PM2.5
- ④ 項目:金属,イオン,炭素成分及び以下の指標成分
- (2) 多環芳香族炭化水素 (PAHs):15 種類
 - 【2環】ナフタレン,
 - 【3環】アントラセン、アセナフテン、 フルオレン、フェナントレン、
 - 【4環】ピレン,ベンゾ(a)アントラセン, フルオランテン,クリセン,
 - 【5環】ベンゾ(b)フルオランテン, ベンゾ(k)フルオランテン, ベンゾ(a)ピレン, ジベンゾ(a, h)アントラセン,
 - 【6環】ベンゾ(g, h, i)ペリレン, インデノ(1, 2, 3-C, D) ピレン
 - 分析方法
 - A) 前処理

ガラス繊維ろ紙の 1/4 をジクロロメタン 5mL で 15 分間超音波抽出し、フィルタろ過したものを窒素パージ後、アセトニトリル 1mL メスアップした。

B) HPLC 分析

カラム: ODS 3.9mm×15cm

グラジエント:水/アセトニトリル

0-5min(60 : 40), 5-30min(60 : 40 \rightarrow

95:5), 30-40min(95:5)

検出器:UV-FL

② 結果と考察

縮合環ごとの組成比は季節変動がなく,4環,5環が多く,2環,3環が少なかった。2環,3環は粒子からガス化していることが原因と考えられる。また指標成分との比較により,長距離輸送よりも固定発生源の影響が示唆された。

ベンゾ(k) フルオランテン/ベンゾ(a) ピレン 比は $0.62\sim0.78$ と,ガソリン車の0.5 に近く i , また,CPF 解析の結果から高濃度日の風向きは 東西の寄与が大きかったことから,自動車の 影響があると考えられる。

表2. PAHs と長距離輸送, 固定発生源との相関

	春	夏	秋
長距離輸送(SO ₄ 2-),	0.18	0.37	0.57
固定発生源(NOx)	0.39	0.55	0.86

(3) レボグルコサン他

① 分析方法

A) 前処理

ガラス繊維ろ紙の 1/4 に内部標準((S)-(+)-ケトピン酸)を添加し、ジクロロメタン/メタノール(2:1)5mL で 15 分間超音波抽出し、フィルタろ過したものを窒素パージ後、BSTFE(+10%TMCS)で 70° C 2 時間トリメチルシリル誘導体化し、ジクロロメタン/ヘキサン(1:1)400 μ L にメスアップした。

B) GC-MS 分析

カラム:5ms $60m\times0.25mm\times0.25\mu m$ 昇温: 60° C(1min) \rightarrow 10 $^{\circ}$ C/min \rightarrow 200 $^{\circ}$ C \rightarrow 5 $^{\circ}$ C/min \rightarrow 300 $^{\circ}$ C(10min)

 1μ L スプリットレス, He1mL/min,

SIM: m/z=247(コハク酸), 251(ピノン酸), 204(レボグルコサン), 239(ケトピン酸)

② 結果と考察

A) コハク酸

季節変動が少なく、春期は長距離輸送と相関 が無く、夏期及び秋期に光化学反応と相関が高 くなっているので、二次生成の影響の方が大き い。

ジカルボン酸の酸化の指標としてのシュウ酸/ コハク酸比は夏の光化学反応と特異的に相関が 良く,有機エアロゾルの酸化の指標として有効 と考えられる。

B) ピノン酸

季節変動が少なく、春期は長距離輸送と相関が無く、光化学反応との相関は反応が盛んな夏期より秋期の方が良かった。二次生成前の物質の季節変動の影響の方が大きいと考えられるため、前駆物質のα-ピネンの季節変動を確認する必要がある。

C) レボグルコサン

秋期に高濃度になっており、長距離輸送と光 化学反応とは秋期での相関がなかったため、固 定発生源の影響が大きいと考えられる。バイオマ ス燃焼の指標であり、秋から春先にかけての藁 焼き等の局所的な影響が示唆されたii。

表 3. 長距離輸送の指標(SO₄²⁻)との相関

	春	夏	秋
コハク酸	0. 29	0.87	0. 91
シュウ酸/コハク酸	0. 47	-0. 56	0. 52
ピノン酸	-0.11	0.72	0.72
レボグルコサン	-0.08	0. 65	0. 28

表 4. 光化学反応の指標(0x max)との相関

	春	夏	秋
コハク酸	-0.06	0. 95	0.73
シュウ酸/コハク酸	-0. 23	0. 97	0. 57
ピノン酸	0. 24	0. 53	0.83
レボグルコサン	0.07	0.81	0.36

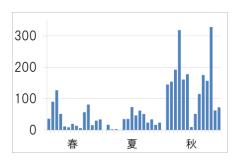


図1. レボグルコサンの季節変動(ng/m³)

4. まとめ

今年度の調査では以下のことが分かった。

- (1)海南市役所でも環境衛生研究センターと同様に和歌山県へのエアロゾルの長距離輸送を評価できる。
- (2) 追加した指標成分は夏の光化学反応の影響 を受けるが、発生源推定に効果的であっ た。

[※] 現 有田振興局健康福祉部

i 吉岡秀俊ら 固定発生源から排出される多環芳香族炭 化水素類の測定,東京都環境科学研究所年報(1998)

ii 坂本和彦ら PM2.5 等のレボグルコサン分析に関する研究, 微小粒子状物質検討会最終報告書 (2011)

環境省受託事業 化学物質環境実態調査 分析法開発 水質中の 2,4-ジアミノアニソールの分析法の検討

水質環境グループ 山本道方

はじめに

化学物質環境実態調査は一般環境中における化学物質の残留状況を把握することを目的に実施され、そのために必要となる分析方法の開発が行われる。

今回開発した物質は、第一種指定化学物質であるが排出量が少なく、指定の妥当性について検討する必要がある 2,4-ジアミノアニソールであり、要求感度は 1.2 μg/L である。

試験方法

1)分析法

a. 試料の採取及び保存

河川水の場合、あらかじめ L-アスコルビン酸 5.0 g 及び塩化ナトリウム 30.0 g を添加した採取容器に水質試料 $1000 \, \text{mL}$ を採取し、振とうする。

海水の場合、あらかじめ L-アスコルビン酸 1.0 g を添加した採取容器に水質試料 1000 mL を採取し、振とうする。

試料は採取後、冷暗所に保管し、速やかに試験操作を行う。速やかに行えない場合は、冷暗所に保存する。

b. 試料の前処理方法

フローチャートを図1に示す。

河川水の場合、200 mL 共栓付きメスシリンダーに水質試料 100 mL を分取し、25%アンモニア水/メタノール(5/95) 1 mL、p-アミノフェノール溶液(10.0 mg/L)100 μ L を順に加え、振り混ぜる。

海水の場合は、200 mL 共栓付きメスシリン ダーに *L*-アスコルビン酸 0.1 g、精製水 90 mL 及び試料水 10 mL を加え、振とう混合した後、 さらに 25%アンモニア水/メタノール(5/95) 0.5 mL、p-アミノフェノール溶液(10.0 mg/L)100 μ L を順に加え、振り混ぜる。

メタノール 5 mL、精製水 5 mL でコンディショニングした固相抽出カートリッジ(OASIS MCX Plus) に 5 mL/min の流量で通水する。固相抽出カートリッジを精製水 5 mL、メタノール 5 mL の順で洗浄した後、25%アンモニア水/メタノール(5/95) 溶液 6 mL で溶出し、10 mLメスフラスコに回収する。さらにシリンジで約10 mL の空気を送り、固相抽出カートリッジ中の残液を10 mLメスフラスコに合わせる。ギ酸120 μL を加えた後、精製水を加えて10 mL に定容し、試験液とする。試験液は速やかに分析する。

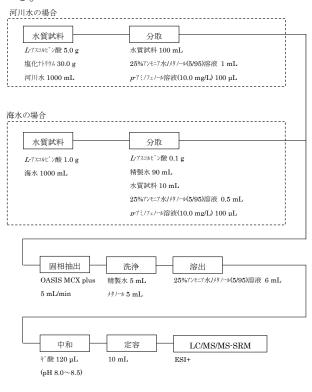


図1 分析方法のフローチャート

c. 装置及び分析条件

[LC 条件]

使用機種: Agilent 1100 series

カラム: L-columun 2, ODS, 2.1×150 mm, 3 μm

移動相: A:5 mmol/L 酢酸アンモニウム溶液

B:メタノール

: $0 \sim 12 \min A:90 \rightarrow 60 \quad B:10 \rightarrow 40$

12 ~ 13 min A:60→5 B:40→95

 $13 \sim 25 \min A:B=5:95$

 $25\sim25.1 \text{ min A:} 5\rightarrow90 \text{ B:} 95\rightarrow10$

25.1~50 min A:B=90:10

流量: 0.2 mL/min

カラム温度:40℃

注入量:3 μL

[MS 条件]

使用機種: API3200 (AB サイエックス製)

測定モード(イオン化法): SRM(ESI-Positive)

イオンソース: Curtain Gas:35.0 psi, Collision

Gas:3, Ion Source Gas 1:70.0psi, Ion Source Gas 2:60.0 psi, Ion Spray Voltage:4500V,

Temperature:700°C

モニターイオン: m/z 139.1>124.2 (定量用)

m/z 139.1>108.3 (確認用)

電圧: Collision Energy:19V(m/z 139.1>124.2)

21V(m/z 139.1>108.3)

Declustering Potential:31V

結果と考察

1)検量線を図2に示す

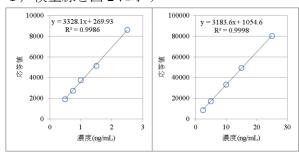


図2 検量線

左: 0.5~2.5 ng/mL 右: 2.5~25 ng/mL

2) 装置の検出下限(IDL)を表 1、定量下限 (MDL)を表 2 に示す。

表 1 検出下限(IDL)

試料	IDL	試料量	最終液量	IDL 試料換
	(ng/mL)	(mL)	(mL)	算値(μg/L)
河川水	0.073	100	10	0.0073
海水	0.073	10	10	0.073

表 2 定量下限(MDL)

試料	試料量	最終液量	MDL	要求感度		
	(mL)	(mL)	$(\mu g/L)$	$(\mu \text{g}/L)$		
河川水	100	10	0.0090	0.023		
海水	10	10	0.16	0.41		

3) 添加回収試験の結果を表3に示す。

表 3 添加回収試験結果

試料	測定	添加量	検出濃	回収率	CV
	回数	(ng)	度	(%)	(%)
			$(\mu g/L)$		
河川水	1	無添加	0.00410	_	_
	7	10	0.01380	097	2.2
海水	1	無添加	0.00150	_	_
	7	03	0.00473	108	2.0

4) 保存性試験の結果を表4に示す。

表 4 保存性試験

試料		初期濃度	残存率%
		(ng/mL)	7 日間
環境水	河川水	0.100	94
	海水	1.00	84

5)環境試料の分析

本法を用いて、県内の河川水(紀の川)及び 海水(和歌山港)を測定した結果、2,4-DAA は 検出されなかった。

まとめ

開発した分析方法は、環境水中に含まれる 0.2 μg/L オーダーの 2,4-ジアミノアニソールの 検出に適用可能と判断される。

年 報 編 集 委 員

大 谷 一 夫 委員長 規 坂 勝 副委員長 口 隆 之 宮 本 委 員 卓 野中 IJ 寺 杣 文 男 IJ 靖智 髙 井 IJ 猿 棒 康 量

発 行 年 月 平 成 28年 12月 編 集 ・発 行 和歌山県環境衛生研究センター 〒 640 - 8272 和歌山市砂山南 3 - 3 - 45 TEL (073)423 - 9570

FAX (073) 423 — 8798